skip to main content


Title: Ultra-sensitive isotope probing to quantify activity and substrate assimilation in microbiomes
Abstract Background

Stable isotope probing (SIP) approaches are a critical tool in microbiome research to determine associations between species and substrates, as well as the activity of species. The application of these approaches ranges from studying microbial communities important for global biogeochemical cycling to host-microbiota interactions in the intestinal tract. Current SIP approaches, such as DNA-SIP or nanoSIMS allow to analyze incorporation of stable isotopes with high coverage of taxa in a community and at the single cell level, respectively, however they are limited in terms of sensitivity, resolution or throughput.

Results

Here, we present an ultra-sensitive, high-throughput protein-based stable isotope probing approach (Protein-SIP), which cuts cost for labeled substrates by 50–99% as compared to other SIP and Protein-SIP approaches and thus enables isotope labeling experiments on much larger scales and with higher replication. The approach allows for the determination of isotope incorporation into microbiome members with species level resolution using standard metaproteomics liquid chromatography-tandem mass spectrometry (LC–MS/MS) measurements. At the core of the approach are new algorithms to analyze the data, which have been implemented in an open-source software (https://sourceforge.net/projects/calis-p/). We demonstrate sensitivity, precision and accuracy using bacterial cultures and mock communities with different labeling schemes. Furthermore, we benchmark our approach against two existing Protein-SIP approaches and show that in the low labeling range used our approach is the most sensitive and accurate. Finally, we measure translational activity using18O heavy water labeling in a 63-species community derived from human fecal samples grown on media simulating two different diets. Activity could be quantified on average for 27 species per sample, with 9 species showing significantly higher activity on a high protein diet, as compared to a high fiber diet. Surprisingly, among the species with increased activity on high protein were severalBacteroidesspecies known as fiber consumers. Apparently, protein supply is a critical consideration when assessing growth of intestinal microbes on fiber, including fiber-based prebiotics.

Conclusions

We demonstrate that our Protein-SIP approach allows for the ultra-sensitive (0.01 to 10% label) detection of stable isotopes of elements found in proteins, using standard metaproteomics data.

 
more » « less
Award ID(s):
1934844
NSF-PAR ID:
10396012
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Microbiome
Volume:
11
Issue:
1
ISSN:
2049-2618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Adaptive radiations are typically characterized by niche partitioning among their constituent species. Trophic niche partitioning is particularly important in predatory animals, which rely on limited food resources for survival.

    We test for trophic niche partitioning in an adaptive radiation of HawaiianTetragnathaspiders, which have diversified in situ on the Hawaiian Islands. We focus on a community of nine species belonging to two different clades, one web‐building and the other actively hunting, which co‐occur in wet forest on East Maui. We hypothesize that trophic niches differ significantly both: (a) among species within a clade, indicating food resource partitioning, and (b) between the two clades, corresponding to their differences in foraging strategy.

    To assess niches of the spider species, we measure: (a) web architecture, the structure of the hunting tool, and (b) site choice, the physical placement of the web in the habitat. We then test whether differences in these parameters translate into meaningful differences in trophic niche by measuring (c) stable isotope signatures of carbon and nitrogen in the spiders’ tissues, and (d) gut content of spiders based on metabarcoding data.

    We find significant interspecific differences in web architecture and site choice. Importantly, these differences are reflected in stable isotope signatures among the five web‐building species, as well as significant isotopic differences between web‐builders and active hunters. Gut content data also show interspecific and inter‐clade differences. Pairwise overlaps of web architecture between species are positively correlated with overlaps of isotopic signature.

    Our results reveal trophic niche partitioning among species within each clade, as well as between the web‐building and actively hunting clades. Based on the correlation between web architecture and stable isotopes, it appears that the isotopic signatures of spiders’ tissues are influenced by architectural differences among their webs. Our findings indicate an important link between web structure, microhabitat preference and diet in the HawaiianTetragnatha.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Rationale

    Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.

    Methods

    We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver ofSceloporus undulatusandCrotaphytus collaristhat differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.

    Results

    Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.

    Conclusions

    Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.

     
    more » « less
  3. Abstract

    Trophic morphology affects resource acquisition; therefore, species differences in such traits may be informative for inferring resource use overlap and potential species interactions.

    In lizards, head size and shape determine the size and hardness of prey that can be consumed. Lizards with large differences in head morphology are expected to overlap less in prey use than lizards with more similar traits.

    Stable isotopes are increasingly being used to describe diet, yet how traditional functional traits affect isotopic diet is often not clear a priori.

    We measured head size, head shape, 𝛿15N, and 𝛿13C under controlled resource availability in an enclosure experiment using introduced lizards in Hawaiʻi to test whether functional traits predict isotopic diet.

    Brown anolesAnolis sagreihad the tallest and narrowest heads, the highest values of 𝛿13C, and the lowest values of 𝛿15N. Gold dust day geckosPhelsuma laticaudahad the shortest and widest heads, the lowest values of 𝛿13C, and the highest values of 𝛿15N. Green anolesAnolis carolinensiswere intermediate in both diet and morphology.

    As a result of isotopic diet overlap, green anoles have reduced competitor‐free resource space in the presence of both of the other lizard species.

    Head shape was the best predictor of diet and the only trait that explained variation within as well as among species. Head size was sexually dimorphic, and therefore the weaker diet correlations with this trait may be explained by sexual selection.

    Breadth in morphospace did not correlate with isotopic diet breadth, nor did the amount of overlap in morphospace predict the amount of overlap in isotopic diet space.

    While lizards were able to locally depress prey in experimental enclosures, no shifts in diet were detected in response to the presence of heterospecifics.

    The generality of head shape in predicting isotopic diet, and whether it does so independent of habitat use, warrants additional study. Head shape provides a potentially fruitful avenue for trait‐based approaches to studying ecology and evolution in lizards.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Martiny, Jennifer B. (Ed.)
    ABSTRACT Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum -associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum -dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase ( nifH ) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales ) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13 CH 4 and 15 N 2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere ( Methyloferula spp. of the Rhizobiales ) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands. IMPORTANCE Nitrogen availability frequently limits photosynthetic production in Sphagnum moss-dominated high-latitude peatlands, which are crucial carbon-sequestering ecosystems at risk to climate change effects. It has been previously suggested that microbial methane-fueled fixation of atmospheric nitrogen (N 2 ) may occur in these ecosystems, but this process and the organisms involved are largely uncharacterized. A combination of omics (DNA and RNA characterization) and dual-isotope incorporation approaches illuminated the functional diversity of Sphagnum -associated microbiomes and defined 12 bacterial genera in its core microbiome at the continental scale. Moreover, obligate diazotrophic methanotrophs showed high nitrogen fixation gene expression levels and incorporated a substantial amount of atmospheric nitrogen and methane-driven carbon into their biomass. Thus, these results point to a central role for members of the rare biosphere in Sphagnum microbiomes as keystone species that couple nitrogen fixation to methane oxidation in nutrient-poor peatlands. 
    more » « less
  5. Rationale

    Protein studies in archaeology and paleontology have been dominated by stable isotope studies to understand diet and trophic levels, but recent applications of proteomic techniques have resulted in a more complete understanding of protein diagenesis than stable isotopes alone. In stable isotope analyses, samples are retained or discarded based on their properties. Proteomics can directly determine what proteins are present within the sample and may be able to allow previously discarded samples to be analyzed.

    Methods

    Protein samples that had been previously analyzed for stable isotopes, including those with marginal and poor sample quality, were characterized by liquid chromatography/mass spectrometry using an LTQ Orbitrap Velos mass spectrometer after separation on a Dionex Ultimate 3000 LC system. Data were analyzed using MetaMorpheus and custom R scripts.

    Results

    We found a variety of proteins in addition to collagen, although collagen I was found in the majority of the samples (most samples >80%). We also found a positive correlation between total deamidation and wt% N, suggesting that deamidation may impact the overall nitrogen signal in bulk analyses. The amino acid profiles of samples, including those of marginal or poor stable isotope quality, reflect the expected collagen I percentages, allowing their use in single amino acid stable isotope analyses.

    Conclusions

    All the samples regardless of quality were found to have high concentrations of collagen I, making interpretations of dietary routing based on collagen I reasonably valid. The amino acid profiles on the marginal and poor samples reflect an expected collagen I profile and allow these samples to be recovered for single amino acid analyses.

     
    more » « less