skip to main content


Title: The rise of an apex predator following deglaciation
Abstract Aim

Sea otters (Enhydra lutris) are an apex predator of the nearshore marine community and nearly went extinct at the turn of the 20th century. Reintroductions and legal protection allowed sea otters to re‐colonize much of their former range. Our objective was to chronicle the colonization of this apex predator in Glacier Bay, Alaska, to help understand the mechanisms that governed their successful colonization.

Location

Glacier Bay is a tidewater glacier fjord in southeastern Alaska that was entirely covered by glaciers in the mid‐18th century. Since then, it has endured the fastest tidewater glacier retreat in recorded history.

Methods

We collected and analysed several data sets, spanning 20 years, to document the spatio‐temporal dynamics of an apex predator expanding into an area where they were formerly absent. We used novel quantitative tools to model the occupancy, abundance and colonization dynamics of sea otters, while accounting for uncertainty in the data collection process, the ecological process and model parameters.

Results

Twenty years after sea otters were first observed colonizing Glacier Bay, they became one of the most abundant and widely distributed marine mammal. The population grew exponentially at a rate of 20% per year. They colonized Glacier Bay at a maximum rate of 6 km per year, with faster colonization rates occurring early in the colonization process. During colonization, sea otters selected shallow areas, close to shore, with a steep bottom slope, and a relatively simple shoreline complexity index.

Main conclusions

The growth and expansion of sea otters in Glacier Bay demonstrate how legal protection and translocation of apex predators can facilitate their successful establishment into a community in which they were formerly absent. The success of sea otters was, in part, a consequence of habitat that was left largely unperturbed by humans for the past 250 years. Further, sea otters and other marine predators, whose distribution is limited by ice, have the potential to expand in distribution and abundance, reshaping future marine communities in the wake of deglaciation and global loss of sea ice.

 
more » « less
NSF-PAR ID:
10396023
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Diversity and Distributions
Volume:
25
Issue:
6
ISSN:
1366-9516
Page Range / eLocation ID:
p. 895-908
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Partial differential equations (PDEs) are a useful tool for modeling spatiotemporal dynamics of ecological processes. However, as an ecological process evolves, we need statistical models that can adapt to changing dynamics as new data are collected. We developed a model that combines an ecological diffusion equation and logistic growth to characterize colonization processes of a population that establishes long‐term equilibrium over a heterogeneous environment. We also developed a homogenization strategy to statistically upscale the PDE for faster computation and adopted a hierarchical framework to accommodate multiple data sources collected at different spatial scales. We highlighted the advantages of using a logistic reaction component instead of a Malthusian component when population growth demonstrates asymptotic behavior. As a case study, we demonstrated that our model improves spatiotemporal abundance forecasts of sea otters in Glacier Bay, Alaska. Furthermore, we predicted spatially varying local equilibrium abundances as a result of environmentally driven diffusion and density‐regulated growth. Integrating equilibrium abundances over the study area in our application enabled us to infer the overall carrying capacity of sea otters in Glacier Bay, Alaska.

     
    more » « less
  2. Abstract

    Sea ice loss is fundamentally altering the Arctic marine environment. Yet there is a paucity of data on the adaptability of food webs to ecosystem change, including predator–prey interactions. Polar bears (Ursus maritimus) are an important subsistence resource for Indigenous people and an apex predator that relies entirely on the under‐ice food web to meet its energy needs. In this study, we assessed whether polar bears maintained dietary energy density by prey switching in response to spatiotemporal variation in prey availability. We compared the macronutrient composition of diets inferred from stable carbon and nitrogen isotopes in polar bear guard hair (primarily representing summer/fall diet) during periods when bears had low and high survival (2004–2016), between bears that summered on land versus pack ice, and between bears occupying different regions of the Alaskan and Canadian Beaufort Sea. Polar bears consumed diets with lower energy density during periods of low survival, suggesting that concurrent increased dietary proportions of beluga whales (Delphinapterus leucas) did not offset reduced proportions of ringed seals (Pusa hispida). Diets with the lowest energy density and proportions from ringed seal blubber were consumed by bears in the western Beaufort Sea (Alaska) during a period when polar bear abundance declined. Intake required to meet energy requirements of an average free‐ranging adult female polar bear was 2.1 kg/day on diets consumed during years with high survival but rose to 3.0 kg/day when survival was low. Although bears that summered onshore in the Alaskan Beaufort Sea had higher‐fat diets than bears that summered on the pack ice, access to the remains of subsistence‐harvested bowhead whales (Balaena mysticetus) contributed little to improving diet energy density. Because most bears in this region remain with the sea ice year round, prey switching and consumption of whale carcasses onshore appear insufficient to augment diets when availability of their primary prey, ringed seals, is reduced. Our results show that a strong predator–prey relationship between polar bears and ringed seals continues in the Beaufort Sea. The method of estimating dietary blubber using predator hair, demonstrated here, provides a new metric to monitor predator–prey relationships that affect individual health and population demographics.

     
    more » « less
  3. Abstract

    Arctic climate change poses serious threats to polar bears (Ursus maritimus) as reduced sea ice makes seal prey inaccessible and marine ecosystems undergo bottom‐up reorganization. Polar bears’ elongated skulls and reduced molar dentition, as compared to their sister species the grizzly bear (Ursus arctos), are adaptations associated with hunting seals on sea ice and a soft, lipid‐rich diet of blubber and meat. With significant declines in sea ice, it is unclear if and how polar bears may be altering their diets. Clarifying polar bear dietary responses to changing climates, both today and in the past, is critical to proper conservation and management of this apex predator. This is particularly important when a dietary strategy may be maladaptive. Here, we test the hypothesis that hard‐food consumption (i.e., less preferred foods including bone), inferred from dental microwear texture analysis, increased with Arctic warming. We find that polar bears demonstrate a conserved absence of hard‐object feeding in Alaska through time (including approximately 1000 years ago), until the 21st century, consistent with a highly conserved and specialized diet of soft blubber and flesh. Notably, our results also suggest that some 21st‐century polar bears may be consuming harder foods (e.g., increased carcass utilization, terrestrial foods including garbage), despite having skulls and metabolisms poorly suited for such a diet. Prior to the 21st century, only polar bears with larger mandibles demonstrated increased hard‐object feeding, though to a much lower degree than closely related grizzly bears which regularly consume mechanically challenging foods. Polar bears, being morphologically specialized, have biomechanical constraints which may limit their ability to consume mechanically challenging diets, with dietary shifts occurring only under the most extreme scenarios. Collectively, the highly specialized diets and cranial morphology of polar bears may severely limit their ability to adapt to a warming Arctic.

     
    more » « less
  4. Abstract

    The sea otter (Enhydra lutris) population of Southeast Alaska has been growing at a higher rate than other regions along the Pacific coast. While good for the recovery of this endangered species, rapid population growth of this apex predator can create a human‐wildlife conflict, negatively impacting commercial and subsistence fishing. Previous foraging studies throughout the sea otter range have shown they will reduce invertebrate prey biomass when recolonizing an area. The goal of this study was to examine and quantify the energy content of sea otter diets through direct foraging observations and prey collection. Our study area, Prince of Wales Island in southern Southeast Alaska, exhibits a gradient of sea otter recolonization, thus providing a natural experiment to test diet change in regions with different recolonization histories. Sea otter prey items were collected in three seasons (spring, summer, and winter) to measure caloric value and lipid and protein content. We observed 3523 sea otter dives during the spring and summer. A majority of the sea otter diet consisted of clams. Sea otters in newly recolonized areas had lower diet diversity, higher energetic intake rates (EIR, kcal/min), and prey had higher energy content (kcal/g). Females with pups had the highest diet diversity and the lowest EIR. Sea otter EIR were higher in the fall and winter vs. spring and summer. Sea cucumber energy and lipid content appeared to correspond with times when sea otters consumed the highest proportion of sea cucumbers. These caloric variations are an important component of understanding ecosystem‐level effects sea otters have in the nearshore environment.

     
    more » « less
  5. Abstract. The effect of the North Atlantic Ocean on the Greenland Ice Sheet through submarine melting of Greenland's tidewater glacier calving fronts is thought to be a key driver of widespread glacier retreat, dynamic mass loss and sea level contribution from the ice sheet. Despite its critical importance, problems of process complexity and scale hinder efforts to represent the influence of submarine melting in ice-sheet-scale models. Here we propose parameterizing tidewater glacier terminus position as a simple linear function of submarine melting, with submarine melting in turn estimated as a function of subglacial discharge and ocean temperature. The relationship is tested, calibrated and validated using datasets of terminus position, subglacial discharge and ocean temperature covering the full ice sheet and surrounding ocean from the period 1960–2018. We demonstrate a statistically significant link between multi-decadal tidewater glacier terminus position change and submarine melting and show that the proposed parameterization has predictive power when considering a population of glaciers. An illustrative 21st century projection is considered, suggesting that tidewater glaciers in Greenland will undergo little further retreat in a low-emission RCP2.6 scenario. In contrast, a high-emission RCP8.5 scenario results in a median retreat of 4.2 km, with a quarter of tidewater glaciers experiencing retreat exceeding 10 km. Our study provides a long-term and ice-sheet-wide assessment of the sensitivity of tidewater glaciers to submarine melting and proposes a practical and empirically validated means of incorporating ocean forcing into models of the Greenland ice sheet. 
    more » « less