Substitutionally doped transition metal dichalcogenides (TMDs) are essential for advancing TMD‐based field effect transistors, sensors, and quantum photonic devices. However, the impact of local dopant concentrations and dopant–dopant interactions on charge doping and defect formation within TMDs remains underexplored. Here, a breakthrough understanding of the influence of rhenium (Re) concentration is presented on charge doping and defect formation in MoS2monolayers grown by metal–organic chemical vapor deposition (MOCVD). It is shown that Re‐MoS2films exhibit reduced sulfur‐site defects, consistent with prior reports. However, as the Re concentration approaches ⪆2 atom%, significant clustering of Re in the MoS2is observed. Ab Initio calculations indicate that the transition from isolated Re atoms to Re clusters increases the ionization energy of Re dopants, thereby reducing Re‐doping efficacy. Using photoluminescence (PL) spectroscopy, it is shown that Re dopant clustering creates defect states that trap photogenerated excitons within the MoS2lattice, resulting in broad sub‐gap emission. These results provide critical insights into how the local concentration of metal dopants influences carrier density, defect formation, and exciton recombination in TMDs, offering a novel framework for designing future TMD‐based devices with improved electronic and photonic properties.
more »
« less
Spatial Control of Substitutional Dopants in Hexagonal Monolayer WS 2 : The Effect of Edge Termination
Abstract The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)‐grown monolayer WS2, it is found that a higher density of transition metal dopants is always incorporated in sulfur‐terminated domains when compared to tungsten‐terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron‐ and vanadium‐doped WS2monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge‐dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten‐zigzag edges, resulting in the formation of open sites at sulfur‐zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in‐plane hetero‐/multi‐junctions that display fascinating electronic, optoelectronic, and magnetic properties.
more »
« less
- Award ID(s):
- 2011839
- PAR ID:
- 10396034
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 19
- Issue:
- 6
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Scalable substitutional doping of 2D transition metal dichalcogenides is a prerequisite to developing next‐generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, scalable growth and vanadium (V) doping of 2D WSe2at front‐end‐of‐line and back‐end‐of‐line compatible temperatures of 800 and 400 °C, respectively, is reported. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results inp‐type doping via the introduction of discrete defect levels that lie close to the valence band maxima. Thep‐type nature of the V dopants is further verified by constructed field‐effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, this study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic‐grade wafer‐scale extrinsic 2D semiconductors.more » « less
-
Abstract Doping is a fundamental requirement for tuning and improving the properties of conventional semiconductors. Recent doping studies including niobium (Nb) doping of molybdenum disulfide (MoS2) and tungsten (W) doping of molybdenum diselenide (MoSe2) have suggested that substitutional doping may provide an efficient route to tune the doping type and suppress deep trap levels of 2D materials. To date, the impact of the doping on the structural, electronic, and photonic properties of in situ‐doped monolayers remains unanswered due to challenges including strong film substrate charge transfer, and difficulty achieving doping concentrations greater than 0.3 at%. Here, in situ rhenium (Re) doping of synthetic monolayer MoS2with ≈1 at% Re is demonstrated. To limit substrate film charge transfer,r‐plane sapphire is used. Electronic measurements demonstrate that 1 at% Re doping achieves nearly degenerate n‐type doping, which agrees with density functional theory calculations. Moreover, low‐temperature photoluminescence indicates a significant quench of the defect‐bound emission when Re is introduced, which is attributed to the MoO bond and sulfur vacancies passivation and reduction in gap states due to the presence of Re. The work presented here demonstrates that Re doping of MoS2is a promising route toward electronic and photonic engineering of 2D materials.more » « less
-
Abstract 2D dilute magnetic semiconductors have been recently reported in transition metal dichalcogenides doped with spin‐polarized transition metal atoms, for example vanadium‐doped WS2monolayers, which exhibit room‐temperature ferromagnetic ordering. However, a broadband characterization of the electronic band structure of these doped WS2monolayers and its dependence on vanadium concentration is still lacking. Therefore, power‐dependent photoluminescence, resonant four‐wave mixing, and differential reflectance spectroscopies are performed here to study optical transitions close to the A exciton energy of vanadium‐doped WS2monolayers at three different doping levels. Instead of a single A exciton peak, vanadium‐doped samples exhibit two photoluminescence peaks associated with transitions from a donor‐like level and the conduction band minima. Moreover, resonant Raman and second‐harmonic generation experiments reveal a blueshift in the B exciton energy but no energy change in the C exciton after vanadium doping. Density functional theory calculations show that the band structure is sensitive to the HubbardUcorrection for vanadium, and several scenarios are proposed to explain the two photoluminescence peaks around the A exciton energy region. This work provides the first broadband optical characterization of these 2D dilute magnetic semiconductors, shedding light on the novel and tunable electronic features of V‐doped WS2 monolayers.more » « less
-
Abstract Control over the distribution of dopants in nanowires is essential for regulating their electronic properties, but perturbations in nanowire microstructure may affect doping. Conversely, dopants may be used to control nanowire microstructure including the generation of twinning superlattices (TSLs)—periodic arrays of twin planes. Here the spatial distribution of Be dopants in a GaAs nanowire with a TSL is investigated using atom probe tomography. Homogeneous dopant distributions in both the radial and axial directions are observed, indicating a decoupling of the dopant distribution from the nanowire microstructure. Although the dopant distribution is microscopically homogenous, radial distribution function analysis discovered that 1% of the Be atoms occur in substitutional-interstitial pairs. The pairing confirms theoretical predictions based on the low defect formation energy. These findings indicate that using dopants to engineer microstructure does not necessarily imply that the dopant distribution is non-uniform.more » « less