Abstract Rejective sampling improves design and estimation efficiency of single-phase sampling when auxiliary information in a finite population is available. When such auxiliary information is unavailable, we propose to use two-phase rejective sampling (TPRS), which involves measuring auxiliary variables for the sample of units in the first phase, followed by the implementation of rejective sampling for the outcome in the second phase. We explore the asymptotic design properties of double expansion and regression estimators under TPRS. We show that TPRS enhances the efficiency of the double-expansion estimator, rendering it comparable to a regression estimator. We further refine the design to accommodate varying importance of covariates and extend it to multi-phase sampling. We start with the theory for the population mean and then extend the theory to parameters defined by general estimating equations. Our asymptotic results for TPRS immediately cover the existing single-phase rejective sampling, under which the asymptotic theory has not been fully established.
more »
« less
Fitting additive risk models using auxiliary information
There has been a growing interest in incorporating auxiliary summary information from external studies into the analysis of internal individual‐level data. In this paper, we propose an adaptive estimation procedure for an additive risk model to integrate auxiliary subgroup survival information via a penalized method of moments technique. Our approach can accommodate information from heterogeneous data. Parameters to quantify the magnitude of potential incomparability between internal data and external auxiliary information are introduced in our framework while nonzero components of these parameters suggest a violation of the homogeneity assumption. We further develop an efficient computational algorithm to solve the numerical optimization problem by profiling out the nuisance parameters. In an asymptotic sense, our method can be as efficient as if all the incomparable auxiliary information is accurately acknowledged and has been automatically excluded from consideration. The asymptotic normality of the proposed estimator of the regression coefficients is established, with an explicit formula for the asymptotic variance‐covariance matrix that can be consistently estimated from the data. Simulation studies show that the proposed method yields a substantial gain in statistical efficiency over the conventional method using the internal data only, and reduces estimation biases when the given auxiliary survival information is incomparable. We illustrate the proposed method with a lung cancer survival study.
more »
« less
- Award ID(s):
- 2112938
- PAR ID:
- 10396065
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Statistics in Medicine
- Volume:
- 42
- Issue:
- 6
- ISSN:
- 0277-6715
- Format(s):
- Medium: X Size: p. 894-916
- Size(s):
- p. 894-916
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a two-stage estimation procedure for a copula-based model with semi-competing risks data, where the non-terminal event is subject to dependent censoring by the terminal event, and both events are subject to independent censoring. With a copula-based model, the marginal survival functions of individual event times are specified by semiparametric transformation models, and the dependence between the bivariate event times is specified by a parametric copula function. For the estimation procedure, in the first stage, the parameters associated with the marginal of the terminal event are estimated using only the corresponding observed outcomes, and in the second stage, the marginal parameters for the non-terminal event time and the copula parameter are estimated together via maximizing a pseudo-likelihood function based on the joint distribution of the bivariate event times. We derived the asymptotic properties of the proposed estimator and provided an analytic variance estimator for inference. Through simulation studies, we showed that our approach leads to consistent estimates with less computational cost and more robustness than the one-stage procedure developed in Chen (2012), where all parameters were estimated simultaneously. In addition, our approach demonstrates more desirable finite-sample performances over another existing two-stage estimation method proposed in Zhu et al. (2021). An R package PMLE4SCR is developed to implement our proposed method.more » « less
-
The existence of external (“side”) semantic knowledge has been shown to result in more expressive computational event models. To enable the use of side information that may be noisy or missing, we propose a semi-supervised information bottleneck-based discrete latent variable model. We reparameterize the model’s discrete variables with auxiliary continuous latent variables and a light-weight hierarchical structure. Our model is learned to minimize the mutual information between the observed data and optional side knowledge that is not already captured by the new, auxiliary variables. We theoretically show that our approach generalizes past approaches, and perform an empirical case study of our approach on event modeling. We corroborate our theoretical results with strong empirical experiments, showing that the proposed method outperforms previous proposed approaches on multiple datasets.more » « less
-
Shen, Xiaotong (Ed.)In recent years, there has been an exponentially increased amount of point clouds collected with irregular shapes in various areas. Motivated by the importance of solid modeling for point clouds, we develop a novel and efficient smoothing tool based on multivariate splines over the triangulation to extract the underlying signal and build up a 3D solid model from the point cloud. The proposed method can denoise or deblur the point cloud effectively, provide a multi-resolution reconstruction of the actual signal, and handle sparse and irregularly distributed point clouds to recover the underlying trajectory. In addition, our method provides a natural way of numerosity data reduction. We establish the theoretical guarantees of the proposed method, including the convergence rate and asymptotic normality of the estimator, and show that the convergence rate achieves optimal nonparametric convergence. We also introduce a bootstrap method to quantify the uncertainty of the estimators. Through extensive simulation studies and a real data example, we demonstrate the superiority of the proposed method over traditional smoothing methods in terms of estimation accuracy and efficiency of data reduction.more » « less
-
Shen, Xiaotong (Ed.)In recent years, there has been an exponentially increased amount of point clouds collected with irregular shapes in various areas. Motivated by the importance of solid modeling for point clouds, we develop a novel and efficient smoothing tool based on multivariate splines over the triangulation to extract the underlying signal and build up a 3D solid model from the point cloud. The proposed method can denoise or deblur the point cloud effectively, provide a multi-resolution reconstruction of the actual signal, and handle sparse and irregularly distributed point clouds to recover the underlying trajectory. In addition, our method provides a natural way of numerosity data reduction. We establish the theoretical guarantees of the proposed method, including the convergence rate and asymptotic normality of the estimator, and show that the convergence rate achieves optimal nonparametric convergence. We also introduce a bootstrap method to quantify the uncertainty of the estimators. Through extensive simulation studies and a real data example, we demonstrate the superiority of the proposed method over traditional smoothing methods in terms of estimation accuracy and efficiency of data reduction.more » « less
An official website of the United States government
