This content will become publicly available on February 8, 2024
Resistive random-access memory (RRAM) devices have been widely studied for neuromorphic, in-memory computing. One of the most studied RRAM structures consists of a titanium capping layer and a HfOxadaptive oxide. Although these devices show promise in improving neuromorphic circuits, high variability, non-linearity, and asymmetric resistance changes limit their usefulness. Many studies have improved linearity by changing materials in or around the device, the circuitry, or the analog bias conditions. However, the impact of prior biasing conditions on the observed analog resistance change is not well understood. Experimental results in this study demonstrate that prior higher reset voltages used after forming cause a greater resistance change during subsequent identical analog pulsing. A multiphysics finite element model suggests that this greater analog resistance change is due to a higher concentration of oxygen ions stored in the titanium capping layer with increasing magnitude of the reset voltage. This work suggests that local ion concentration variations in the titanium capping layer of just tens of atoms cause significant resistance variation during analog operation.
- Publication Date:
- NSF-PAR ID:
- 10396080
- Journal Name:
- Applied Physics Letters
- Volume:
- 122
- Issue:
- 6
- Page Range or eLocation-ID:
- Article No. 063502
- ISSN:
- 0003-6951
- Publisher:
- American Institute of Physics
- Sponsoring Org:
- National Science Foundation
More Like this
-
The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability.more »
-
Biomimetic synaptic processes, which are imitated by functional memory devices in the computer industry, are a key focus of artificial intelligence (AI) research. It is critical to developing a memory technology that is compatible with Brain-Inspired Computing in order to eliminate the von Neumann bottleneck that restricts the efficiency of traditional computer designs. Due to restrictions such as high operation voltage, poor retention capacity, and high power consumption, silicon-based flash memory, which presently dominates the data storage devices market, is having difficulty meeting the requirements of future data storage device development. The developing resistive random-access memory (RRAM) has sparked intense investigation because of its simple two-terminal structure: two electrodes and a switching layer. RRAM has a resistive switching phenomenon which is a cycling behavior between the high resistance state and the low resistance state. This developing device type is projected to outperform traditional memory devices. Indium gallium zinc oxide (IGZO) has attracted great attention for the RRAM switching layer because of its high transparency and high atomic diffusion property of oxygen atoms. More importantly, by controlling the oxygen ratio in the sputter gas, its electrical properties can be easily tuned. The IGZO has been applied to the thin-film transistor (TFT),more »
-
The major focus of artificial intelligence (AI) research is made on biomimetic synaptic processes that are mimicked by functional memory devices in the computer industry [1]. It is urgent to find a memory technology for suiting with Brain-Inspired Computing to break the von Neumann bottleneck which limits the efficiency of conventional computer architectures [2]. Silicon-based flash memory, which currently dominates the market for data storage devices, is facing challenging issues to meet the needs of future data storage device development due to the limitations, such as high-power consumption, high operation voltage, and low retention capacity [1]. The emerging resistive random-access memory (RRAM) has elicited intense research as its simple sandwiched structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer, can store data using RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). This class of emerging devices is expected to outperform conventional memory devices [3]. Specifically, the advantages of RRAM include low-voltage operation, short programming time, great cyclic stability, and good scalability [4]. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has attracted attention because of its abundance and high atomic diffusion property ofmore »
-
Phase change memory devices become practical for non-volatile storage at small dimensions due to reduced power and predictable device operation. In larger scale cells, devices can be locally melted due to filament formation and liquid filaments can be retained in parts of the cell for a long time even if most or all of the cells are initially amorphized during long fall-times. The complex amorphization and crystallization dynamics make these large cells more unpredictable and enable their applications as physically unclonable functions (PUF) [1,2]. Computational analysis of the complex amorphization-crystallization dynamics in phase change memory devices with large geometries is important to understand the evolution of phase distributions and temperature profiles during programming of these devices. In this work, we conduct electrothermal finite element simulations of reset operation on a large Ge2Sb2Te5 (GST) cell using the framework we have developed in COMSOL multiphysics [3]-[9] and analyze the complex dynamics of amorphization, nucleation and growth during electrical stress. We input voltage waveforms measured from electrical characterization of on-oxide GST line cells with bottom metal contact pads and Si3N4 capping. A 2D polycrystalline model of the experimentally measured cells (~360 nm wide, ~400 nm long and ~50 nm thick) is constructed inmore »
-
Abstract Chalcogenide resistive switches (RS), such as Ag2S, change resistance due to the growth of metallic filaments between electrodes along the electric field gradient. Therefore, they are candidates for neuromorphic and volatile memory applications. This work analyzed the RS of individual Ag2S nanowires (NWs) and extended the basic RS model to reproduce experimental observations. The work models resistivity of the device as a percolation of the conductive filaments. It also addressed continuous fluctuations of the resistivity with a stochastic change in volume fractions of the filaments in the device. As a result, these fluctuations cause unpredictable patterns in current-voltage characteristics and include a spontaneous change in resistance of the device during the linear sweep that conventional memristor models with constant resistivity cannot represent. The parameters of the presented stochastic model of a single Ag2S NW were fitted to the experimental data and reproduced key features of RS in the physical devices. Moreover, the model suggested a non-core shell structure of the Ag2S NWs. The outcome of this work is aimed to aid in simulating large self-assembled memristive networks and help to extend existing RS models.