skip to main content


Title: A UV double pass spectrograph for monitoring stellar activity for the Keck Planet Finder
We present a compact, double-pass cross-dispersed echelle spectrograph that is tailored specifically to cover the 383 nm to 403 nm spectral range and record R∼16,000 spectra of the stellar chromospheric Ca II H and K lines. This `H and K' spectrometer was developed as a subsystem of the Keck Planet Finder (KPF), which is an extremely precise optical (440 - 870 nm) radial velocity spectrograph for Keck I, scheduled for commissioning Fall 2022, with the science objective of measuring precise masses of exoplanets. The H and K spectrometer will observe simultaneously with KPF to independently track the chromospheric activity of the host stars that KPF observes, which is expected to dominate the KPF measurement floor over long timescales. The H and K Spectrometer is fiber fed from the KPF fiber injection unit with total throughput of 4-7% (top of telescope to CCD) over its operating spectral range. Here we detail the optical design trade offs, mechanical design, and first results from alignment and integration testing.  more » « less
Award ID(s):
2034278
NSF-PAR ID:
10396085
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro
Date Published:
Journal Name:
Proceedings of the SPIE
Volume:
12184
Page Range / eLocation ID:
206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    As part of the Keck Planet Finder (KPF) project, a Fiber Injection Unit (FIU) was implemented and will be deployed on the Keck Ⅰ telescope, with the aim of providing dispersion compensated and tip/tilt corrected light to the KPF instrument and accompanying H&K spectrometer. The goal of KPF is to characterize exoplanets via the radial velocity technique, with a single measurement precision of 30cm/s or better. To accomplish this, the FIU must provide a stable F-number and chief ray angle to the Science and Calcium H&K fibers. Our design approach was use a planar optical layout with atmospheric dispersion compensation for both the Science and Calcium H&K arms. A SWIR guider camera and piezo tip/tilt mirror are used to keep the target centered on the fibers. 
    more » « less
  2. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter. 
    more » « less
  3. Context. Phosphorus (P) is considered to be one of the key elements for life, making it an important element to look for in the abundance analysis of spectra of stellar systems. Yet, only a select number of spectroscopic studies exist to estimate the phosphorus abundances and investigate its trend across a range of metallicities. This is due to the lack of good phosphorus lines in the optical wavelength region and the requirement of careful manual analysis of the blended phosphorus lines in near-infrared H-band spectra obtained with individual observations and surveys such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Aims. Based on a consistent and systematic analysis of high-resolution, near-infrared Immersion GRating INfrared Spectrograph (IGRINS) spectra of 38 K giant stars in the Solar neighborhood, we present and investigate the phosphorus abundance trend in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex. Furthermore, we compare this trend with the available chemical evolution models to shed some light on the origin and evolution of phosphorus. Methods. We have observed full H - and K -band spectra at a spectral resolving power of R = 45 000 with IGRINS mounted on the Gemini South telescope, the Discovery Channel Telescope, and the Harlan J Smith Telescope at McDonald Observatory. Abundances were determined from spectral lines by modeling the synthetic spectrum that best matches the observed spectrum by χ 2 minimization. For this task, we used the Spectroscopy Made Easy (SME) tool in combination with one-dimensional (1D) Model Atmospheres in a Radiative and Convective Scheme (MARCS) stellar atmosphere models. The investigated sample of stars have reliable stellar parameters estimated using optical FIber-fed Echelle Spectrograph (FIES) spectra obtained in a previous study of a set of stars called Giants in the Local Disk (GILD). In order to determine the phosphorus abundances from the 16482.92 Å phosphorus line, we needed to take special care blending the CO( v = 7−4) line. With the stellar parameters known, we thus determined the C, N, and O abundances from atomic carbon and a range of nonblended molecular lines (CO, CN, and OH) which are plentiful in the H-band region of K giant stars, assuring an appropriate modeling of the blending CO( v = 7−4) line. Results. We present the [P/Fe] versus [Fe/H] trend for K giant stars in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex and enhanced phosphorus abundances for two metal-poor s-rich stars. We find that our trend matches well with the compiled literature sample of prominently dwarf stars and the limited number of giant stars. Our trend is found to be higher by ~0.05−0.1 dex compared to the theoretical chemical evolution trend resulting from the core collapse supernova (type II) of massive stars with the phosphorus yields arbitrarily increased by a factor of 2.75. Thus the enhancement factor might need to be ~0.05−0.1 dex higher to match our trend. We also find an empirically determined primary behavior for phosphorus. Furthermore, the phosphorus abundance is found to be elevated by ~0.6−0.9 dex in the two s-enriched stars compared to the theoretical chemical evolution trend. 
    more » « less
  4. Integrated astrophotonic spectrometers are integrated variants of conventional free-space spectrometers that offer significantly reduced size, weight, and cost and immunity to alignment errors, and can be readily integrated with other astrophotonic instruments such as nulling interferometers. Current integrated dispersive astrophotonic spectrometers are one-dimensional devices such as arrayed waveguide gratings or planar echelle gratings. These devices have been limited to104resolving powers and<<#comment/>1000spectral bins due to having limited total optical delay paths and 1D detector array pixel densities. In this paper, we propose and demonstrate a high-resolution and compact astrophotonic serpentine integrated grating (SIG) spectrometer design based on a 2D dispersive serpentine optical phased array. The SIG device combines a 5.2 cm long folded delay line with grating couplers to create a large optical delay path along two dimensions in a compact integrated device footprint. Analogous to free-space crossed-dispersion high-resolution spectrometers, the SIG spectrometer maps spectral content to a 2D wavelength-beam-steered folded-raster emission pattern focused onto a 2D detector array. We demonstrate a SIG spectrometer with∼<#comment/>100kresolving power and∼<#comment/>6750spectral bins, which are approximately an order of magnitude higher than previous integrated photonic designs that operate over a wide bandwidth, in a0.4mm2footprint. We measure a Rayleigh resolution of1.93±<#comment/>0.07GHzand an operational bandwidth from 1540 nm to 1650 nm. Finally, we discuss refinements of the SIG spectrometer that improve its resolution, bandwidth, and throughput. These results show that SIG spectrometer technology provides a path towards miniaturized, high-resolution spectrometers for applications in astronomy and beyond.

     
    more » « less
  5. Abstract

    We obtained ultraviolet and optical spectra for nine M dwarfs across a range of rotation periods to determine whether they showed stochastic intrinsic variability distinguishable from flares. The ultraviolet spectra were observed during the Far Ultraviolet M-dwarf Evolution Survey Hubble Space Telescope program using the Space Telescope Imaging Spectrograph. The optical observations were taken from the Apache Point Observatory 3.5 m telescope using the Dual Imaging Spectrograph and from the Gemini South Observatory using the Gemini Multi-Object Spectrograph. We used the optical spectra to measure multiple chromospheric lines: the Balmer series from Hαto H10 and the CaiiH and K lines. We find that after excising flares, these lines vary on the order of 1%–20% at minute-cadence over the course of an hour. The absolute amplitude of variability was greater for the faster rotating M dwarfs in our sample. Among the five stars for which we measured the weaker Balmer lines, we note a tentative trend that the fractional amplitude of the variability increases for higher-order Balmer lines. We measured the integrated flux of multiple ultraviolet emission features formed in the transition region: the Nv, Siiv,and Civresonance line doublets, and the Ciiand Heiimultiplets. The signal-to-noise ratio of the UV data was too low for us to detect nonflare variability at the same scale and time cadence as the optical. We consider multiple mechanisms for the observed stochastic variability and propose both observational and theoretical avenues of investigation to determine the physical causes of intrinsic variability in the chromospheres of M dwarfs.

     
    more » « less