skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wood alpha-cellulose stable C and O isotope ratios from New Hampshire and Vermont
To quantify the effects of tree height and canopy position on delta13C and delta18O of wood cellulose, we sampled 399 trees and saplings of eight species at nine forest stands across New Hampshire and Vermont, along with nearby saplings growing in the open. Samples were collected in 2017-18, and we analyzed the combined alpha-cellulose from growth rings formed in 2013-2017 for each tree. Carbon data are published in: Vadeboncoeur, M., K. Jennings, A. Ouimette, and H. Asbjornsen. (2020) Correcting tree-ring d13C time series for tree-size effects in eight temperate tree species. Tree Physiology. https://doi.org/10.1093/treephys/tpz138  more » « less
Award ID(s):
1637685
PAR ID:
10396124
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cernusak, Lucas (Ed.)
    Abstract Stable carbon isotope ratios (δ13C) in tree rings have been widely used to study changes in intrinsic water-use efficiency (iWUE), sometimes with limited consideration of how C-isotope discrimination is affected by tree height and canopy position. Our goals were to quantify the relationships between tree size or tree microenvironment and wood δ13C for eight functionally diverse temperate tree species in northern New England and to better understand the physical and physiological mechanisms underlying these differences. We collected short increment cores in closed-canopy stands and analyzed δ13C in the most recent 5 years of growth. We also sampled saplings in both shaded and sun-exposed environments. In closed-canopy stands, we found strong tree-size effects on δ13C, with 3.7–7.2‰ of difference explained by linear regression vs height (0.11–0.28‰ m−1), which in some cases is substantially stronger than the effect reported in previous studies. However, open-grown saplings were often isotopically more similar to large codominant trees than to shade-grown saplings, indicating that light exposure contributes more to the physiological and isotopic differences between small and large trees than does height. We found that in closed-canopy forests, δ13C correlations with diameter at breast height were nonlinear but also strong, allowing a straightforward procedure to correct tree- or stand-scale δ13C-based iWUE chronologies for changing tree size. We demonstrate how to use such data to correct and interpret multi-decadal composite isotope chronologies in both shade-regenerated and open-grown tree cohorts, and we highlight the importance of understanding site history when interpreting δ13C time series. 
    more » « less
  2. Extreme temperatures and severe drought events have led to widespread tree mortality worldwide. In semi-arid regions of the Southwest United States, these events pose a significant threat to piñon-juniper (PJ) woodlands. We studied the effects of piñon and juniper mortality on the growth and physiology of existing saplings in PJ woodlands by analyzing water status, photosynthetic activity, and tissue chemistry to gain insights into these impacts. Juniper saplings exhibited improved water status and water use efficiency in response to overstory mortality, whereas piñon saplings did not. Additionally, both piñon and juniper saplings exhibited increased photosynthetic rates, increased photosynthetic capacity, and enhanced growth rates. Our results suggest that saplings of both species responded similarly regardless of whether a mature piñon or juniper died. However, piñon saplings appeared to be more vulnerable to overstory mortality, likely due to the difference in hydraulic strategies between piñon and juniper This study enhances our understanding of the post-mortality recovery process in piñon-juniper ecosystems, providing valuable insights into the contrasting effects of piñon vs. juniper mortality as well as the distinct physiological responses exhibited by piñon and juniper saplings. 
    more » « less
  3. null (Ed.)
    We quantified fire severity in the Tubbs Fire (Sonoma Co., CA, October 2017) across different vegetation types, and post-fire mortality and regeneration of tree species in permanent plots at the Pepperwood Preserve. The fire burned 14,895 ha, with > 25% in both medium and high severity. Chaparral and Pinus attenuata stands mostly burned at high severity, while other vegetation types experienced a fairly even distribution of fire severity. The fire killed 50% of saplings (dbh < 1 cm) and 27% of trees (dbh ≥ 1 cm), with higher mortality in high severity patches. Quercus agrifolia, Q. kelloggii, Arbutus menziesii and Umbellularia californica exhibited very high levels of topkill combined with basal resprouting. Pseudotsuga menziesii, which lacks resprouting ability, exhibited high mortality, especially in saplings at high severity. The results provide a baseline to examine potential vegetation change due to high-severity fire, especially in high-severity stands of P. menziesii. 
    more » « less
  4. Abstract Management of tree cover, either to curb bush encroachment or to mitigate losses of woody cover to over‐browsing, is a major concern in savanna ecosystems. Once established, trees are often “trapped” as saplings, since interactions among disturbance, plant competition, and precipitation delay sapling recruitment into adult size classes. Saplings can be directly suppressed by wildlife browsing and competition from adjacent plants, and indirectly facilitated by grazers, such as cattle, which feed on neighboring grasses. Yet few experimental studies have simultaneously quantified the effects of cattle and wildlife on sapling growth, particularly over long time scales. We used a series of replicated 4‐ha herbivore‐manipulation plots to investigate the net effects of wildlife and moderate cattle grazing onAcacia drepanolobiumsapling growth over 10 years that encompassed extended wet and dry periods. We also simulated more intense cattle grazing using grass removal treatments (0.5‐m radius around saplings), and we quantified the role of intraspecific tree competition using neighborhood tree surveys (trees within a 3‐m radius). Wildlife, which included elephants, had a positive effect on sapling growth. Wildlife also reduced neighbor tree density during the 10‐yr study, which likely caused the positive effect of wildlife on saplings. Although moderate cattle grazing did not affect sapling growth, grass removal treatments simulating heavy grazing increased sapling growth. Both grass removal and neighbor tree effects on saplings were strongest during above‐average rainfall years following drought. This highlights that livestock‐driven reductions in grass cover and catastrophic wildlife damage to trees during droughts present a need, or an opportunity, for targeted management of sapling growth and woody plant cover during ensuing wet periods. 
    more » « less
  5. Spotted lanternfly (SLF; Lycorma delicatula White; Hemiptera: Fulgoridae) invaded the US from Asia and was first detected in 2014; currently, populations have established in 14 states primarily in the Northeast and Mid-Atlantic. It feeds voraciously on phloem sap from a broad range of host plants, with a preference for tree of heaven ( Ailanthus altissima [Sapindales: Simaroubaceae]), grapevines ( Vitis spp. [Vitales: Vitaceae]), and several common hardwood tree species. We evaluated the impacts of fourth instars and adults confined to a single branch or whole trees on gas exchange attributes (carbon assimilation [photosynthetic rate], transpiration and stomatal conductance), selected nutrients, and diameter growth using young saplings of four host tree species planted in a common garden. In general, the effects of adults on trees were greater than nymphs, although there was variation depending on tree species, pest density, and time post-infestation. Nymphs on a single branch of red maple ( Acer rubrum [Sapindales: Sapindaceae]), or silver maple ( Acer saccharinum [Sapindales: Sapindaceae]) at three densities (0, 15, or 30) had no significant effects on gas exchange. In contrast, 40 adults confined to a single branch of red or silver maple rapidly suppressed gas exchange and reduced nitrogen concentration in leaves; soluble sugars in branch wood were reduced in the fall for silver maple and in the following spring for red maple. Fourth instars confined to whole silver maple trees reduced soluble sugars in leaves and branch wood, and reduced tree diameter growth by >50% during the next growing season. In contrast, fourth instars in whole tree enclosures had no effects on black walnut ( Juglans nigra [Fagales: Juglandaceae]). SLF enclosed on tree of heaven at 80 adults per tree suppressed gas exchange after two weeks of feeding, but did not alter non-structural carbohydrates, nitrogen concentrations, or tree growth. Results suggest that moderate to heavy feeding by SLF on young maple saplings may impair tree growth, which could have implications for production nurseries and forest managers. 
    more » « less