skip to main content


Title: Sialylation of chitosan to mitigate Aβ toxicity
Abstract Background

Amyloid beta peptide (Aβ) is the main component of plaques and is known to play a role in the development of Alzheimer's disease (AD). As a result, structures that can trap Aβ or disrupt the interaction between Aβ and cells have been researched as a way to lessen the pathological effects of Aβ. Particularly, sialylated compounds that exhibit clustering effects could be advantageous.

Results

Through the use of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide chemistry, sialic acid (N-acetylneuraminic acid) was used to decorate a chitosan backbone. The compounds were characterized using Fourier-transform infrared spectroscopy (FTIR) and colorimetric assays. Using the model neuroblastoma cell line SH-SY5Y, the ability of these compounds to lessen the toxicity of Aβ was examined in vitro. Successful in vitro mitigation of Aβ toxicity was found to be critically dependent on the degree of sialylation. In particular, a balance between the degree of sialylation and molecular flexibility was determined to be the criteria as it allows for natural clustering. Additionally, chitosan alone demonstrated low levels of cellular toxicity with moderate levels of toxicity mitigation (comparable to low degrees of labelling).

Conclusions

Compounds were successfully produced, and they varied in their effectiveness in reducing Aβ's toxicity to cells in culture. The effect of molecular flexibility and clustering on toxicity mitigation is explained in this work. This shows the potential of polymeric sugars for the creation of AD treatments.

 
more » « less
NSF-PAR ID:
10396284
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Bulletin of the National Research Centre
Volume:
47
Issue:
1
ISSN:
2522-8307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease that impacts nearly 400 million people worldwide. The accumulation of amyloid beta (Aβ) in the brain has historically been associated with AD, and recent evidence suggests that neuroinflammation plays a central role in its origin and progression. These observations have given rise to the theory that Aβ is the primary trigger of AD, and induces proinflammatory activation of immune brain cells (i.e., microglia), which culminates in neuronal damage and cognitive decline. To test this hypothesis, many in vitro systems have been established to study Aβ-mediated activation of innate immune cells. Nevertheless, the transcriptional resemblance of these models to the microglia in the AD brain has never been comprehensively studied on a genome-wide scale.

    Methods

    We used bulk RNA-seq to assess the transcriptional differences between in vitro cell types used to model neuroinflammation in AD, including several established, primary and iPSC-derived immune cell lines (macrophages, microglia and astrocytes) and their similarities to primary cells in the AD brain. We then analyzed the transcriptional response of these innate immune cells to synthetic Aβ or LPS and INFγ.

    Results

    We found that human induced pluripotent stem cell (hIPSC)-derived microglia (IMGL) are the in vitro cell model that best resembles primary microglia. Surprisingly, synthetic Aβ does not trigger a robust transcriptional response in any of the cellular models analyzed, despite testing a wide variety of Aβ formulations, concentrations, and treatment conditions. Finally, we found that bacterial LPS and INFγ activate microglia and induce transcriptional changes that resemble many, but not all, aspects of the transcriptomic profiles of disease associated microglia (DAM) present in the AD brain.

    Conclusions

    These results suggest that synthetic Aβ treatment of innate immune cell cultures does not recapitulate transcriptional profiles observed in microglia from AD brains. In contrast, treating IMGL with LPS and INFγ induces transcriptional changes similar to those observed in microglia detected in AD brains.

     
    more » « less
  2. Neurodegeneration related to Alzheimer's disease has long been linked to the accumulation of abnormal aggregates of amyloid-β (Aβ) peptides. Pre-fibrillar oligomeric intermediates of Aβ aggregation are considered the primary drivers of neurotoxicity, however, their targetting remains an unresolved challenge. In response, the effects of macromolecular components of the blood–brain barrier, artificial extracellular matrix mimics, and polymeric drug delivery particles, on the aggregation of Aβ peptides are gaining interest. Multiple experimental studies have demonstrated the potential of one such macromolecule, chitosan (CHT) – a polysaccharide with acid induced cationicity (p K a 6.5) – to inhibit the aggregation of Aβ, and reduce the associated neurotoxic effects. However, the mechanistic details of this inhibitory action, and the structural details of the emergent Aβ complexes are not understood. In this work, we probed how CHT modulated the aggregation of Aβ's central hydrophobic core fragment, K 16 LVFFAE 22 , using coarse-grained molecular dynamics simulations. CHT was found to bind and sequester Aβ peptides, thus limiting their ultimate aggregation numbers. The intensity of this inhibitory action was enhanced by CHT concentration, as well as CHT's pH-dependent degree of cationicity, corroborating experimental observations. Furthermore, CHT was found to reshape the conformational landscapes of Aβ peptides, enriching collapsed peptides at near-physiological conditions of pH 7.5, and extended peptides at slightly acidic conditions of pH 6.5, where the charge profile of K 16 LVFFAE 22 peptides remained unchanged. These conformational changes were limited to peptides in direct contact in CHT, thus emphasizing the influence of local environments on Aβ conformations. These findings add to basic knowledge of the aggregation behaviour of Aβ peptides, and could potentially guide the development of advanced CHT-based materials for the treatment of Alzheimer's disease. 
    more » « less
  3. Abstract. Organic aerosols generated from the smoldering combustion of woodcritically impact air quality and health for billions of people worldwide;yet, the links between the chemical components and the optical or biologicaleffects of woodsmoke aerosol (WSA) are still poorly understood. In thiswork, an untargeted analysis of the molecular composition of smoldering WSA,generated in a controlled environment from nine types of heartwood fuels(African mahogany, birch, cherry, maple, pine, poplar, red oak, redwood, andwalnut), identified several hundred compounds using gas chromatography massspectrometry (GC-MS) and nano-electrospray high-resolution mass spectrometry(HRMS) with tandem multistage mass spectrometry (MSn). The effects ofWSA on cell toxicity as well as gene expression dependent on the aryl hydrocarbon receptor (AhR) and estrogen receptor(ER) were characterized with cellular assays, andthe visible mass absorption coefficients (MACvis) of WSA were measuredwith ultraviolet–visible spectroscopy. The WSAs studied in this work have significantlevels of biological and toxicological activity, with exposure levels inboth an outdoor and indoor environment similar to or greater than those ofother toxicants. A correlation between the HRMS molecular composition andaerosol properties found that phenolic compounds from the oxidativedecomposition of lignin are the main drivers of aerosol effects, while thecellulose decomposition products play a secondary role; e.g., levoglucosanis anticorrelated with multiple effects. Polycyclic aromatic hydrocarbons(PAHs) are not expected to form at the combustion temperature in this work,nor were they observed above the detection limit; thus, biological and opticalproperties of the smoldering WSA are not attributed to PAHs. Syringylcompounds tend to correlate with cell toxicity, while the more conjugatedmolecules (including several compounds assigned to dimers) have higher AhRactivity and MACvis. The negative correlation between cell toxicity andAhR activity suggests that the toxicity of smoldering WSA to cells is notmediated by the AhR. Both mass-normalized biological outcomes have astatistically significant dependence on the degree of combustion of thewood. In addition, our observations support the fact that the visible lightabsorption of WSA is at least partially due to charge transfer effects inaerosols, as previously suggested. Finally, MACvis has no correlationwith toxicity or receptor signaling, suggesting that key chromophores inthis work are not biologically active on the endpoints tested. 
    more » « less
  4. Abstract

    Amyloid-β (Aβ) and semen-derived enhancer of viral infection (SEVI) are considered as the two causative proteins for central pathogenic cause of Alzheimer’s disease (AD) and HIV/AIDS, respectively. Separately, Aβ-AD and SEVI-HIV/AIDS systems have been studied extensively both in fundamental research and in clinical trials. Despite significant differences between Aβ-AD and SEVI-HIV/AIDS systems, they share some commonalities on amyloid and antimicrobial characteristics between Aβ and SEVI, there are apparent overlaps in dysfunctional neurological symptoms between AD and HIV/AIDS. Few studies have reported a potential pathological link between Aβ-AD and SEVI-HIV/AIDS at a protein level. Here, we demonstrate the cross-seeding interactions between Aβ and SEVI proteins using in vitro and in vivo approaches. Cross-seeding of SEVI with Aβ enabled to completely prevent Aβ aggregation at sub-stoichiometric concentrations, disaggregate preformed Aβ fibrils, reduce Aβ-induced cell toxicity, and attenuate Aβ-accumulated paralysis in transgenic AD C. elegans. This work describes a potential crosstalk between AD and HIV/AIDS via the cross-seeding between Aβ and SEVI, identifies SEVI as Aβ inhibitor for possible treatment or prevention of AD, and explains the role of SEVI in the gender difference in AD.

     
    more » « less
  5. Abstract

    A recent theranostic approach to address Alzheimer's disease (AD) utilizes multifunctional targets that both tag and negate the toxicity of AD biomarkers. These compounds, which emit fluorescence with both an activation and a spectral shift in the presence of Aβ, were previously characterized with traditional fluorescence imaging for binary characterization. However, these multifunctional compounds have broad and dynamic emission spectra that are dependent on factors such as the local environment, presence of Aβ deposits, etc. Since quantitative multiphoton microscopy is sensitive to the binding dynamics of molecules, we characterized the performance of two such compounds, LS‐4 and ZY‐12‐OMe, using Simultaneous Label‐free Autofluorescence Multi‐harmonic (SLAM) microscopy and Fast Optical Coherence, Autofluorescence Lifetime imaging and Second harmonic generation (FOCALS) microscopy. This study shows that the combination of quantitative multiphoton imaging with multifunctional tags for AD offers new insights into the interaction of these tags with AD biomarkers and the theranostic mechanisms.

     
    more » « less