skip to main content


Title: Natural Shaping of Acellular Dermal Matrices for Implant‐Based Breast Reconstruction via Expansile Kirigami
Abstract

To complete a successful and aesthetic breast reconstruction for breast cancer survivors, tissue reinforcing acellular dermal matrices (ADMs) are widely utilized to create slings/pockets to keep breast implants or autologous tissue transfer secured against the chest wall in the desired location. However, ADM sheets are 2D and cannot completely cover the entire implant without wrinkles. Here, guided by finite element modeling, a kirigami strategy is presented to cut the ADM sheets with locally and precisely controlled stretchability, curvature, and elasticity. Upon expansion, a single kirigami ADM sheet can conformably wrap the implant regardless of the shape and size, forming a natural teardrop shape; contour cuts prescribe the topographical height and fractal cuts in the center ensures horizontal expandability and thus conformability. This kirigami ADM can provide support to the reconstructed breast in the desired regions, potentially offering optimal outcomes and patient‐specific reconstruction, while minimizing operative time and cost.

 
more » « less
NSF-PAR ID:
10396462
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
6
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of incomplete cuts in a thin planar sheet can dramatically alter its mechanical and geometrical response to loading, as the cuts allow the sheet to deform strongly in the third dimension, most beautifully demonstrated in kirigami art-forms. We use numerical experiments to characterize the geometric mechanics of kirigamized sheets as a function of the number, size and orientation of cuts. We show that the geometry of mechanically loaded sheets can be approximated as a composition of simple developable units: flats, cylinders, cones and compressed Elasticae. This geometric construction yields scaling laws for the mechanical response of the sheet in both the weak and strongly deformed limit. In the ultimately stretched limit, this further leads to a theorem on the nature and form of geodesics in an arbitrary kirigami pattern, consistent with observations and simulations. Finally, we show that by varying the shape and size of the geodesic in a kirigamized sheet, we can control the deployment trajectory of the sheet, and thence its functional properties as an exemplar of a tunable structure that can serve as a robotic gripper, a soft light window or the basis for a physically unclonable device. Overall our study of disordered kirigami sets the stage for controlling the shape and shielding the stresses in thin sheets using cuts. 
    more » « less
  2. Abstract

    Soft deployable structures – unlike conventional piecewise rigid deployables based on hinges and springs – can assume intricate 3‐D shapes, thereby enabling transformative soft robotic and manufacturing technologies. Their virtually infinite degrees of freedom allow precise control over the final shape. The same enabling high dimensionality, however, poses a challenge for solving the inverse problem: fabrication of desired 3D structures requires manufacturing technologies with extensive local actuation and control, and a trial‐and‐error search over a large design space. Both of these shortcomings are addressed by first developing a simplified planar fabrication approach that combines two ingredients: strain mismatch between two layers of a composite shell and kirigami cuts that relieves localized stress. In principle, it is possible to generate targeted 3‐D shapes by designing the appropriate kirigami cuts and the amount of prestretch (without any local control). Second, a data‐driven physics‐guided framework is formulated that reduces the dimensionality of the inverse design problem using autoencoders and efficiently searches through the “latent” parameter space in an active learning approach. The rapid design procedure is demonstrated via a range of target shapes, such as peanuts, pringles, flowers, and pyramids. Experiments and our numerical predictions are found to be in good agreement.

     
    more » « less
  3. Abstract

    Kirigami-engineering has become an avenue for realizing multifunctional metamaterials that tap into the instability landscape of planar surfaces embedded with cuts. Recently, it has been shown that two-dimensional Kirigami motifs can unfurl a rich space of out-of-plane deformations, which are programmable and controllable across spatial scales. Notwithstanding Kirigami’s versatility, arriving at a cut layout that yields the desired functionality remains a challenge. Here, we introduce a comprehensive machine learning framework to shed light on the Kirigami design space and to rationally guide the design and control of Kirigami-based materials from the meta-atom to the metamaterial level. We employ a combination of clustering, tandem neural networks, and symbolic regression analyses to obtain Kirigami that fulfills specific design constraints and inform on their control and deployment. Our systematic approach is experimentally demonstrated by examining a variety of applications at different hierarchical levels, effectively providing a tool for the discovery of shape-shifting Kirigami metamaterials.

     
    more » « less
  4. Kirigami-inspired metamaterials are attracting increasing interest because of their ability to achieve extremely large strains and shape changes via out-of-plane buckling. While in flat kirigami sheets, the ligaments buckle simultaneously as Euler columns, leading to a continuous phase transition; here, we demonstrate that kirigami shells can also support discontinuous phase transitions. Specifically, we show via a combination of experiments, numerical simulations, and theoretical analysis that, in cylindrical kirigami shells, the snapping-induced curvature inversion of the initially bent ligaments results in a pop-up process that first localizes near an imperfection and then, as the deformation is increased, progressively spreads through the structure. Notably, we find that the width of the transition zone as well as the stress at which propagation of the instability is triggered can be controlled by carefully selecting the geometry of the cuts and the curvature of the shell. Our study significantly expands the ability of existing kirigami metamaterials and opens avenues for the design of the next generation of responsive surfaces as demonstrated by the design of a smart skin that significantly enhances the crawling efficiency of a simple linear actuator.

     
    more » « less
  5. Abstract

    Mechanical behavior of 2D materials such as MoS2can be tuned by the ancient art of kirigami. Experiments and atomistic simulations show that 2D materials can be stretched more than 50% by strategic insertion of cuts. However, designing kirigami structures with desired mechanical properties is highly sensitive to the pattern and location of kirigami cuts. We use reinforcement learning (RL) to generate a wide range of highly stretchable MoS2kirigami structures. The RL agent is trained by a small fraction (1.45%) of molecular dynamics simulation data, randomly sampled from a search space of over 4 million candidates for MoS2kirigami structures with 6 cuts. After training, the RL agent not only proposes 6-cut kirigami structures that have stretchability above 45%, but also gains mechanistic insight to propose highly stretchable (above 40%) kirigami structures consisting of 8 and 10 cuts from a search space of billion candidates as zero-shot predictions.

     
    more » « less