skip to main content


Title: The SQUALO project (Star formation in QUiescent And Luminous Objects) I: clump-fed accretion mechanism in high-mass star-forming objects
ABSTRACT

The formation mechanism of the most massive stars is far from completely understood. It is still unclear if the formation is core-fed or clump-fed, i.e. if the process is an extension of what happens in low-mass stars, or if the process is more dynamical such as a continuous, multiscale accretion from the gas at parsec (or even larger) scales. In this context, we introduce the SQUALO project, an ALMA 1.3 and 3 mm survey designed to investigate the properties of 13 massive clumps selected at various evolutionary stages, with the common feature that they all show evidence for accretion at the clump scale. In this work, we present the results obtained from the 1.3 mm continuum data. Our observations identify 55 objects with masses in the range 0.4 ≤ M ≤ 309 M⊙, with evidence that the youngest clumps already present some degree of fragmentation. The data show that physical properties such as mass and surface density of the fragments and their parent clumps are tightly correlated. The minimum distance between fragments decreases with evolution, suggesting a dynamical scenario in which massive clumps first fragment under the influence of non-thermal motions driven by the competition between turbulence and gravity. With time gravitational collapse takes over and the fragments organize themselves into more thermally supported objects while continuing to accrete from their parent clump. Finally, one source does not fragment, suggesting that the support of other mechanisms (such as magnetic fields) is crucial only in specific star-forming regions.

 
more » « less
NSF-PAR ID:
10396480
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2306-2327
Size(s):
["p. 2306-2327"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract NGC 602 is a young, low-metallicity star cluster in the “Wing” of the Small Magellanic Cloud. We reveal the recent evolutionary past of the cluster through analysis of high-resolution (∼0.4 pc) Atacama Large Millimeter/submillimeter Array observations of molecular gas in the associated H ii region N90. We identify 110 molecular clumps ( R < 0.8 pc) traced by CO emission, and study the relationship between the clumps and associated young stellar objects (YSOs) and pre-main-sequence (PMS) stars. The clumps have high virial parameters (typical α vir = 4–11) and may retain signatures of a collision in the last ≲8 Myr between H i components of the adjacent supergiant shell SMC-SGS 1. We obtain a CO-bright-to-H 2 gas conversion factor of X CO, B = (3.4 ± 0.2) × 10 20 cm −2 (K km s −1 ) −1 , and correct observed clump properties for CO-dark H 2 gas to derive a total molecular gas mass in N90 of 16,600 ± 2400 M ⊙ . We derive a recent (≲1 Myr) star formation rate of 130 ± 30 M ⊙ Myr −1 with an efficiency of 8% ± 3% assessed through comparing total YSO mass to total molecular gas mass. Very few significant radial trends exist between clump properties or PMS star ages and distance from NGC 602. We do not find evidence for a triggered star formation scenario among the youngest (≲2 Myr) stellar generations, and instead conclude that a sequential star formation process in which NGC 602 did not directly cause recent star formation in the region is likely. 
    more » « less
  2. null (Ed.)
    ABSTRACT The initial mass function (IMF) of stars is a key quantity affecting almost every field of astrophysics, yet it remains unclear what physical mechanisms determine it. We present the first runs of the STAR FORmation in Gaseous Environments project, using a new numerical framework to follow the formation of individual stars in giant molecular clouds (GMCs) using the gizmo code. Our suite includes runs with increasingly complex physics, starting with isothermal ideal magnetohydrodynamics (MHD) and then adding non-isothermal thermodynamics and protostellar outflows. We show that without protostellar outflows the resulting stellar masses are an order of magnitude too high, similar to the result in the base isothermal MHD run. Outflows disrupt the accretion flow around the protostar, allowing gas to fragment and additional stars to form, thereby lowering the mean stellar mass to a value similar to that observed. The effect of jets upon global cloud evolution is most pronounced for lower mass GMCs and dense clumps, so while jets can disrupt low-mass clouds, they are unable to regulate star formation in massive GMCs, as they would turn an order unity fraction of the mass into stars before unbinding the cloud. Jets are also unable to stop the runaway accretion of massive stars, which could ultimately lead to the formation of stars with masses ${\gt}500\, \mathrm{M}_{\rm \odot }$. Although we find that the mass scale set by jets is insensitive to most cloud parameters (i.e. surface density, virial parameter), it is strongly dependent on the momentum loading of the jets (which is poorly constrained by observations) as well as the temperature of the parent cloud, which predicts slightly larger IMF variations than observed. We conclude that protostellar jets play a vital role in setting the mass scale of stars, but additional physics are necessary to reproduce the observed IMF. 
    more » « less
  3. Context. The ionization feedback from H  II regions modifies the properties of high-mass starless clumps (HMSCs, of several hundred to a few thousand solar masses with a typical size of 0.1–1 pc), such as dust temperature and turbulence, on the clump scale. The question of whether the presence of H  II regions modifies the core-scale (~0.025 pc) fragmentation and star formation in HMSCs remains to be explored. Aims. We aim to investigate the difference of 0.025 pc-scale fragmentation between candidate HMSCs that are strongly impacted by H  II regions and less disturbed ones. We also search for evidence of mass shaping and induced star formation in the impacted candidate HMSCs. Methods. Using the ALMA 1.3 mm continuum, with a typical angular resolution of 1.3′′, we imaged eight candidate HMSCs, including four impacted by H  II regions and another four situated in the quiet environment. The less-impacted candidate HMSCs are selected on the basis of their similar mass and distance compared to the impacted ones to avoid any possible bias linked to these parameters. We carried out a comparison between the two types of candidate HMSCs. We used multi-wavelength data to analyze the interaction between H  II regions and the impacted candidate HMSCs. Results. A total of 51 cores were detected in eight clumps, with three to nine cores for each clump. Within our limited sample, we did not find a clear difference in the ~0.025 pc-scale fragmentation between impacted and non-impacted candidate HMSCs, even though H  II regions seem to affect the spatial distribution of the fragmented cores. Both types of candidate HMSCs present a thermal fragmentation with two-level hierarchical features at the clump thermal Jeans length λ J,clump th and 0.3 λ J,clump th . The ALMA emission morphology of the impacted candidate HMSCs AGAL010.214-00.306 and AGAL018.931-00.029 sheds light on the capacities of H  II regions to shape gas and dust in their surroundings and possibly to trigger star formation at ~0.025 pc-scale in candidate HMSCs. Conclusions. The fragmentation at ~0.025 pc scale for both types of candidate HMSCs is likely to be thermal-dominant, meanwhile H  II regions probably have the capacity to assist in the formation of dense structures in the impacted candidate HMSCs. Future ALMA imaging surveys covering a large number of impacted candidate HMSCs with high turbulence levels are needed to confirm the trend of fragmentation indicated in this study. 
    more » « less
  4. Supermassive stars (SMSs) with masses of 𝑀∗ ≃ 104–105 M⊙ are invoked as possible seeds of high-redshift supermassive black holes, but it remains under debate whether their protostar indeed acquires sufficient mass via gas accretion overcoming radiative feedback. We investigate protostellar growth in dynamically heated atomic-cooling haloes (ACHs) found in recent cosmological simulations, performing three-dimensional radiation hydrodynamical (RHD) simulations that consider stellar evolution under variable mass accretion. We find that one of the ACHs feeds the central protostar at rates exceeding a critical value, above which the star evolves in a cool bloating phase and hardly produces ionizing photons. Consequently, the stellar mass reaches 𝑀∗ 􏰁 104 M⊙ unimpeded by radiative feedback. In the other ACH, where the mass supply rate is lower, the star spends most of its life as a hot main-sequence star, emitting intense ionizing radiation. Then, the stellar mass growth is terminated around 500 M⊙ by photoevaporation of the circumstellar disk. A series of our RHD simulations provide a formula of the final stellar mass determined either by stellar feedback or their lifetime as a function of the mass supply rate from the parent cloud in the absence of stellar radiation. Combining the results with the statistical properties of SMS-forming clouds in high-redshift quasar progenitor haloes, we construct a top-heavy mass distribution of primordial stars over 𝑀∗ ≃ 100–105 M⊙, approximately following a power-law spectrum of ∝ 𝑀−1.3 with a steeper decline at 𝑀 􏰁 2 × 104 M . Their massive BH remnants would be ∗∗⊙ further fed via the dense debris disk, powering “milli-quasars" with a bolometric luminosity of 𝐿bol 􏰁 1043 erg s−1. 
    more » « less
  5. Abstract

    CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trendNMs, wheres= 0.38 ± 0.03 is near the pressure-bounded limitsp= 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s−1, mean external pressure (0.5–4) × 108cm−3K, bound clump fraction 0.06, and typical virial parameterα= 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources andNMtrends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps.

     
    more » « less