skip to main content


Title: Higher rank chirality and non-Hermitian skin effect in a topolectrical circuit
Abstract

While chirality imbalances are forbidden in conventional lattice systems, non-Hermiticity can effectively avoid the chiral-doubling theorem to facilitate 1D chiral dynamics. Indeed, such systems support unbalanced unidirectional flows that can lead to the localization of an extensive number of states at the boundary, known as the non-Hermitian skin effect (NHSE). Recently, a generalized (rank-2) chirality describing a 2D robust gapless mode with dispersionω = kxkyhas been introduced in crystalline systems. Here we demonstrate that rank-2 chirality imbalances can be established in a non-Hermitian (NH) lattice system leading to momentum-resolved chiral dynamics, and a rank-2 NHSE where there are both edge- and corner-localized skin modes. We then experimentally test this phenomenology in a 2-dimensional topolectric circuit that implements a NH Hamiltonian with a long-lived rank-2 chiral mode. Using impedance measurements, we confirm the rank-2 NHSE in this system, and its manifestation in the predicted skin modes and a highly unusual momentum-position locking response. Our investigation demonstrates a circuit-based path to exploring higher-rank chiral physics, with potential applications in systems where momentum resolution is necessary, e.g., in beamformers and non-reciprocal devices.

 
more » « less
NSF-PAR ID:
10396482
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The classification of point gap topology in all local non-Hermitian (NH) symmetry classes has been recently established. However, many entries in the resulting periodic table have only been discussed in a formal setting and still lack a physical interpretation in terms of their bulk-boundary correspondence. Here, we derive the edge signatures of all two-dimensional phases with intrinsic point gap topology. While in one dimension point gap topology invariably leads to the NH skin effect, NH boundary physics is significantly richer in two dimensions. We find two broad classes of non-Hermitian edge states: (1)infernal points, where a skin effect occurs only at a single edge momentum, while all other edge momenta are devoid of edge states. Under semi-infinite boundary conditions, the point gap thereby closes completely, but only at a single edge momentum. (2) NH exceptional pointdispersions, where edge states persist at all edge momenta and furnish an anomalous number of symmetry-protected exceptional points. Surprisingly, the latter class of systems allows for a finite, non-extensive number of edge states with a well defined dispersion along all generic edge terminations. Concomitantly, the point gap only closes along the real and imaginary eigenvalue axes, realizing a novel form of NH spectral flow.

     
    more » « less
  2. Abstract

    We combine synchrotron-based near-field infrared spectroscopy and first principles lattice dynamics calculations to explore the vibrational response of CrPS4in bulk, few-, and single-layer form. Analysis of the mode pattern reveals aC2 polar + chiral space group, no symmetry crossover as a function of layer number, and a series of non-monotonic frequency shifts in which modes with significant intralayer character harden on approach to the ultra-thin limit whereas those containing interlayer motion or more complicated displacement patterns soften and show inflection points or steps. This is different from MnPS3where phonons shift as 1/size2and are sensitive to the three-fold rotation about the metal center that drives the symmetry crossover. We discuss these differences as well as implications for properties such as electric polarization in terms of presence or absence of the P–P dimer and other aspects of local structure, sheet density, and size of the van der Waals gap.

     
    more » « less
  3. Abstract

    On‐chip optical nonreciprocity is one of the essential functions to fully advance the development of integrated optical systems, which remains technically challenging in many aspects. There is a great need for mechanisms and approaches to facilitate the large‐scale implementation of nonreciprocal light propagation. Recently, unconventional phenomena, such as chiral optical modes and directional light propagation, have been unraveled at exceptional points (EPs), which are unique degeneracies in the energy spectrum and eigenspace of non‐Hermitian systems. Here, this work theoretically and experimentally demonstrates that by steering a single microresonator with thermo‐optic nonlinearity to chiral EPs, nonreciprocal light propagation is achieved with an isolation ratio up to 24 dB and insertion loss less than 0.5 dB. The nonreciprocity is dependent on the chirality and could be optimized near the EPs. Their results pave new avenues for the nonreciprocal control of light propagation enabled by non‐Hermitian degeneracies and hold great potential for microscale and nanoscale on‐chip nonreciprocal devices.

     
    more » « less
  4. Abstract

    Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of −1) to a two-dimensional, tetratic lattice of merons (with topological charge of −1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

     
    more » « less
  5. Abstract

    Kagomé metals are widely recognized, versatile platforms for exploring topological properties, unconventional electronic correlations, magnetic frustration, and superconductivity. In theRV6Sn6family of materials (R= Sc, Y, Lu), ScV6Sn6hosts an unusual charge density wave ground state as well as structural similarities with theAV3Sb5system (A= K, Cs, Rb). In this work, we combine Raman scattering spectroscopy with first-principles lattice dynamics calculations to reveal phonon mixing processes in the charge density wave state of ScV6Sn6. In the low temperature phase, we find at least four new peaks in the vicinity of the V-containing totally symmetric mode near 240 cm−1suggesting that the density wave acts to mix modes ofP6/mmmand$$R\bar{3}m$$R3¯msymmetry - a result that we quantify by projecting phonons of the high symmetry state onto those of the lower symmetry structure. We also test the stability of the short-range ordered density wave state under compression and propose that both physical and chemical pressure quench the effect. We discuss these findings in terms of symmetry and the structure-property trends that can be unraveled in this system.

     
    more » « less