skip to main content


Title: The genetic basis for panicle trait variation in switchgrass (Panicum virgatum)
Abstract Key message

We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment.

Abstract

Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL × E), and most (four of six) of the effects with QTL × E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel.

 
more » « less
NSF-PAR ID:
10396489
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Theoretical and Applied Genetics
Volume:
135
Issue:
8
ISSN:
0040-5752
Page Range / eLocation ID:
p. 2577-2592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits. 
    more » « less
  2. Abstract Background

    Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus,indica,temperate japonica, andtropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets.

    Results

    We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variation in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice andArabidopsis.

    Conclusions

    Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.

     
    more » « less
  3. Wisser, R J (Ed.)
    Abstract Ionomics measures elemental concentrations in biological organisms and provides a snapshot of physiology under different conditions. In this study, we evaluate genetic variation of the ionome in outbred, perennial switchgrass in three environments across the species’ native range, and explore patterns of genotype-by-environment interactions. We grew 725 clonally replicated genotypes of a large full sib family from a four-way linkage mapping population, created from deeply diverged upland and lowland switchgrass ecotypes, at three common gardens. Concentrations of 18 mineral elements were determined in whole post-anthesis tillers using ion coupled plasma mass spectrometry (ICP-MS). These measurements were used to identify quantitative trait loci (QTL) with and without QTL-by-environment interactions (QTLxE) using a multi-environment QTL mapping approach. We found that element concentrations varied significantly both within and between switchgrass ecotypes, and GxE was present at both the trait and QTL level. Concentrations of 14 of the 18 elements were under some genetic control, and 77 QTL were detected for these elements. Seventy-four percent of QTL colocalized multiple elements, half of QTL exhibited significant QTLxE, and roughly equal numbers of QTL had significant differences in magnitude and sign of their effects across environments. The switchgrass ionome is under moderate genetic control and by loci with highly variable effects across environments. 
    more » « less
  4. Abstract Background

    Maize (Zea Mays) is one of the world’s most important crops. Hybrid maize lines resulted a major improvement in corn production in the previous and current centuries. Understanding the genetic mechanisms of the corn production associated traits greatly facilitate the development of superior hybrid varieties.

    Result

    In this study, four ear traits associated with corn production of Nested Association Mapping (NAM) population were analyzed using a full genetic model, and further, optimal genotype combinations and total genetic effects of current best lines, superior lines, and superior hybrids were predicted for each of the traits at four different locations. The analysis identified 21–34 highly significant SNPs (−log10P > 5), with an estimated total heritability of 37.31–62.34%, while large contributions to variations was due to dominance, dominance-related epistasis, and environmental interaction effects ($${h}_{D+}^2\hat{=}$$hD+2=^14.06% ~ 49.28%), indicating these factors contributed significantly to phenotypic variations of the ear traits. Environment-specific genetic effects were also discovered to be crucial for maize ear traits. There were four SNPs found for three ear traits: two for ear length and weight, and two for ear row number and length. Using the Enumeration method and the stepwise tuning technique, optimum multi-locus genotype combinations for superior lines were identified based on the information obtained from GWAS.

    Conclusions

    Predictions of genetic breeding values showed that different genotype combinations in different geographical regions may be better, and hybrid-line variety breeding with homozygote and heterozygote genotype combinations may have a greater potential to improve ear traits.

     
    more » « less
  5. Abstract

    Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately‐outcrossing herbaceous legume, white clover (Trifolium repens). This widespread species displays a well‐studied chemical defence polymorphism for cyanogenesis (HCN release following tissue damage) and has evolved climate‐associated cyanogenesis clines throughout its range. Two biparental F2 mapping populations, derived from three parents collected in environments spanning the U.S. latitudinal species range (Duluth, MN, St. Louis, MO and Gainesville, FL), were grown in triplicate for two years in reciprocal common garden experiments in the parental environments (6,012 total plants). Vegetative growth and reproductive fitness traits displayed trade‐offs across reciprocal environments, indicating local adaptation. Genetic mapping of fitness traits revealed a genetic architecture characterized by allelic trade‐offs between environments, with 100% and 80% of fitness QTL in the two mapping populations showing significant QTL×E interactions, consistent with antagonistic pleiotropy. Across the genome there were three hotspots of QTL colocalization. Unexpectedly, we found little evidence that the cyanogenesis polymorphism contributes to local adaptation. Instead, divergent life history strategies in reciprocal environments were major fitness determinants: selection favoured early investment in flowering at the cost of multiyear survival in the southernmost site versus delayed flowering and multiyear persistence in the northern environments. Our findings demonstrate that multilocus genetic trade‐offs contribute to contrasting life history characteristics that allow for local adaptation in this outcrossing herbaceous perennial.

     
    more » « less