skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SAFARI: shape analysis for AI-segmented images
Abstract BackgroundRecent developments to segment and characterize the regions of interest (ROI) within medical images have led to promising shape analysis studies. However, the procedures to analyze the ROI are arbitrary and vary by study. A tool to translate the ROI to analyzable shape representations and features is greatly needed. ResultsWe developed SAFARI (shape analysis for AI-segmented images), an open-source package with a user-friendly online tool kit for ROI labelling and shape feature extraction of segmented maps, provided by AI-algorithms or manual segmentation. We demonstrated that half of the shape features extracted by SAFARI were significantly associated with survival outcomes in a case study on 143 consecutive patients with stage I–IV lung cancer and another case study on 61 glioblastoma patients. ConclusionsSAFARI is an efficient and easy-to-use toolkit for segmenting and analyzing ROI in medical images. It can be downloaded from the comprehensive R archive network (CRAN) and accessed athttps://lce.biohpc.swmed.edu/safari/.  more » « less
Award ID(s):
2210912
PAR ID:
10396585
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Medical Imaging
Volume:
22
Issue:
1
ISSN:
1471-2342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundPlant architecture can influence crop yield and quality. Manual extraction of architectural traits is, however, time-consuming, tedious, and error prone. The trait estimation from 3D data addresses occlusion issues with the availability of depth information while deep learning approaches enable learning features without manual design. The goal of this study was to develop a data processing workflow by leveraging 3D deep learning models and a novel 3D data annotation tool to segment cotton plant parts and derive important architectural traits. ResultsThe Point Voxel Convolutional Neural Network (PVCNN) combining both point- and voxel-based representations of 3D data shows less time consumption and better segmentation performance than point-based networks. Results indicate that the best mIoU (89.12%) and accuracy (96.19%) with average inference time of 0.88 s were achieved through PVCNN, compared to Pointnet and Pointnet++. On the seven derived architectural traits from segmented parts, an R2value of more than 0.8 and mean absolute percentage error of less than 10% were attained. ConclusionThis plant part segmentation method based on 3D deep learning enables effective and efficient architectural trait measurement from point clouds, which could be useful to advance plant breeding programs and characterization of in-season developmental traits. The plant part segmentation code is available athttps://github.com/UGA-BSAIL/plant_3d_deep_learning. 
    more » « less
  2. Abstract As use of artificial intelligence (AI) has increased, concerns about AI bias and discrimination have been growing. This paper discusses an application called PyrEval in which natural language processing (NLP) was used to automate assessment and provide feedback on middle school science writing without linguistic discrimination. Linguistic discrimination in this study was operationalized as unfair assessment of scientific essays based on writing features that are not considered normative such as subject‐verb disagreement. Such unfair assessment is especially problematic when the purpose of assessment is not assessing English writing but rather assessing the content of scientific explanations. PyrEval was implemented in middle school science classrooms. Students explained their roller coaster design by stating relationships among such science concepts as potential energy, kinetic energy and law of conservation of energy. Initial and revised versions of scientific essays written by 307 eighth‐grade students were analyzed. Our manual and NLP assessment comparison analysis showed that PyrEval did not penalize student essays that contained non‐normative writing features. Repeated measures ANOVAs and GLMM analysis results revealed that essay quality significantly improved from initial to revised essays after receiving the NLP feedback, regardless of non‐normative writing features. Findings and implications are discussed. Practitioner notesWhat is already known about this topicAdvancement in AI has created a variety of opportunities in education, including automated assessment, but AI is not bias‐free.Automated writing assessment designed to improve students' scientific explanations has been studied.While limited, some studies reported biased performance of automated writing assessment tools, but without looking into actual linguistic features about which the tools may have discriminated.What this paper addsThis study conducted an actual examination of non‐normative linguistic features in essays written by middle school students to uncover how our NLP tool called PyrEval worked to assess them.PyrEval did not penalize essays containing non‐normative linguistic features.Regardless of non‐normative linguistic features, students' essay quality scores significantly improved from initial to revised essays after receiving feedback from PyrEval. Essay quality improvement was observed regardless of students' prior knowledge, school district and teacher variables.Implications for practice and/or policyThis paper inspires practitioners to attend to linguistic discrimination (re)produced by AI.This paper offers possibilities of using PyrEval as a reflection tool, to which human assessors compare their assessment and discover implicit bias against non‐normative linguistic features.PyrEval is available for use ongithub.com/psunlpgroup/PyrEvalv2. 
    more » « less
  3. Abstract BackgroundDirect-sequencing technologies, such as Oxford Nanopore’s, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. ResultHere, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. ConclusionsSequoia’s interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available athttps://github.com/dnonatar/Sequoia. 
    more » « less
  4. Abstract In pursuit of scientific discovery, vast collections of unstructured structural and functional images are acquired; however, only an infinitesimally small fraction of this data is rigorously analyzed, with an even smaller fraction ever being published. One method to accelerate scientific discovery is to extract more insight from costly scientific experiments already conducted. Unfortunately, data from scientific experiments tend only to be accessible by the originator who knows the experiments and directives. Moreover, there are no robust methods to search unstructured databases of images to deduce correlations and insight. Here, we develop a machine learning approach to create image similarity projections to search unstructured image databases. To improve these projections, we develop and train a model to include symmetry-aware features. As an exemplar, we use a set of 25,133 piezoresponse force microscopy images collected on diverse materials systems over five years. We demonstrate how this tool can be used for interactive recursive image searching and exploration, highlighting structural similarities at various length scales. This tool justifies continued investment in federated scientific databases with standardized metadata schemas where the combination of filtering and recursive interactive searching can uncover synthesis-structure-property relations. We provide a customizable open-source package (https://github.com/m3-learning/Recursive_Symmetry_Aware_Materials_Microstructure_Explorer) of this interactive tool for researchers to use with their data. 
    more » « less
  5. Abstract Summarydadi is a popular software package for inferring models of demographic history and natural selection from population genomic data. But using dadi requires Python scripting and manual parallelization of optimization jobs. We developed dadi-cli to simplify dadi usage and also enable straighforward distributed computing. Availability and Implementationdadi-cli is implemented in Python and released under the Apache License 2.0. The source code is available athttps://github.com/xin-huang/dadi-cli. dadi-cli can be installed via PyPI and conda, and is also available through Cacao on Jetstream2https://cacao.jetstream-cloud.org/. 
    more » « less