We are conducting nutrient manipulations in three study sites in the White Mountain National Forest in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook. We monitored foliar chemistry in 13 of our stands (including HBCa and excluding C3) pre-treatment (2008-2010) and post-treatment (2014-2016 and 2021-22). In 2021-22, we also measured specific leaf area, leaf dry matter content, carbon isotope composition, and stomatal density. We found that foliar N concentrations were higher with N addition and foliar P concentrations were higher with P addition. More interestingly, P addition reduced foliar N concentrations and N addition reduced foliar P concentrations. Some interactive effects were observed (i.e. NxP, Species x N, Species x P, Species x N x P). This dataset contains pre- and post- treatment foliar chemistry and trait data, and data from the analysis of quality control standard samples. Changes to pre-treatment data from version 1 include switching white birch trees #8272 and #8252 in stand JBM plots 2 and 3 (8272 is now in the nitrogen plot and 8252 is now in the control plot), correcting the species of tree #1628 in stand HBCa plot 1 (changed from red maple to sugar maple) and tree #8457 in stand HBO plot 3 (changed from sugar maple to red maple), and updating nutrient concentrations for C8 plot 3 sugar maple trees #28 and #30 to include averages of subsamples re-run in 2022. Tree tags were also updated to the tag ID present during the 2023 tree inventory. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.
more »
« less
Foliar nutrient concentrations of six northern hardwood species responded to nitrogen and phosphorus fertilization but did not predict tree growth
Foliar chemistry can be useful for diagnosing soil nutrient availability and plant nutrient limitation. In northern hardwood forests, foliar responses to nitrogen (N) addition have been more often studied than phosphorus (P) addition, and the interactive effects of N and P addition have rarely been described. In the White Mountains of central New Hampshire, plots in ten forest stands of three age classes across three sites were treated annually beginning in 2011 with 30 kg N ha −1 y −1 or 10 kg P ha −1 y −1 or both or neither–a full factorial design. Green leaves of American beech ( Fagus grandifolia Ehrh.), pin cherry ( Prunus pensylvanica L.f.), red maple ( Acer rubrum L.), sugar maple ( A. saccharum Marsh.), white birch ( Betula papyrifera Marsh.), and yellow birch ( B. alleghaniensis Britton) were sampled pre-treatment and 4–6 years post-treatment in two young stands (last cut between 1988–1990), four mid-aged stands (last cut between 1971–1985) and four mature stands (last cut between 1883–1910). In a factorial analysis of species, stand age class, and nutrient addition, foliar N was 12% higher with N addition ( p < 0.001) and foliar P was 45% higher with P addition ( p < 0.001). Notably, P addition reduced foliar N concentration by 3% ( p = 0.05), and N addition reduced foliar P concentration by 7% ( p = 0.002). When both nutrients were added together, foliar P was lower than predicted by the main effects of N and P additions ( p = 0.08 for N × P interaction), presumably because addition of N allowed greater use of P for growth. Foliar nutrients did not differ consistently with stand age class ( p ≥ 0.11), but tree species differed ( p ≤ 0.01), with the pioneer species pin cherry having the highest foliar nutrient concentrations and the greatest responses to nutrient addition. Foliar calcium (Ca) and magnesium (Mg) concentrations, on average, were 10% ( p < 0.001) and 5% lower ( p = 0.01), respectively, with N addition, but were not affected by P addition ( p = 0.35 for Ca and p = 0.93 for Mg). Additions of N and P did not affect foliar potassium (K) concentrations ( p = 0.58 for N addition and p = 0.88 for P addition). Pre-treatment foliar N:P ratios were high enough to suggest P limitation, but trees receiving N ( p = 0.01), not P ( p = 0.64), had higher radial growth rates from 2011 to 2015. The growth response of trees to N or P addition was not explained by pre-treatment foliar N, P, N:P, Ca, Mg, or K.
more »
« less
- Award ID(s):
- 1637685
- PAR ID:
- 10396698
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 10
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e13193
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soil respiration is the largest single efflux in the global carbon cycle and varies in complex ways with climate, vegetation, and soils. The suppressive effect of nitrogen (N) addition on soil respiration is well documented, but the extent to which it may be moderated by stand age or the availability of soil phosphorus (P) is not well understood. We quantified the response of soil respiration to manipulation of soil N and P availability in a full-factorial N x P fertilization experiment spanning 10 years in 13 northern hardwood forests in the White Mountains of New Hampshire, USA. We analyzed data for 2011 alone, to account for potential treatment effects unique to the first year of fertilization, and for three 3-year periods; data from each 3-year period was divided into spring, summer, and fall. Nitrogen addition consistently suppressed soil respiration by up to 14% relative to controls (p £ 0.01 for the main effect of N in 5 of 10 analysis periods). This response was tempered when P was also added, reducing the suppressive effect of N addition from 24 to 1% in one of the ten analysis periods (summer 2012–2014, p = 0.01 for the interaction of N and P). This interaction effect is consistent with observations of reduced foliar N and available soil N following P addition. Mid-successional stands (26–41 years old at the time of the first nutrient addition) consistently had the lowest rates of soil respiration across stand age classes (1.4–6.6 lmol CO2 m-2 s-1), and young stands had the highest (2.5–8.5 lmol CO2 m-2 s-1). In addition to these important effects of treatment and stand age, we observed an unexpected increase in soil respiration, which doubled in 10 years and was not explained by soil temperature patterns, nutrient additions, or increased in fine-root biomass.more » « less
-
In northern hardwood forests, litter decomposition might be affected by nutrient availability, species composition, stand age, or access by decomposers. We investigated these factors at the Bartlett Experimental Forest in New Hampshire. Leaf litter of early and late successional species was collected from four stands that had full factorial nitrogen and phosphorus additions to the soil and were deployed in bags of two mesh sizes (63 µm and 2 mm) in two young and two mature stands. Litter bags were collected three times over the next 2 years, and mass loss was described as an exponential function of time represented by a thermal sum. Litter from young stands had higher initial N and P concentrations and decomposed more quickly than litter from mature stands (p = 0.005), regardless of where it was deployed. Litter decomposed more quickly in fine mesh bags that excluded mesofauna (p < 0.001), which might be explained by the greater rigidity of the large mesh material making poor contact with the soil. Neither nutrient addition (p = 0.94 for N, p = 0.26 for P) nor the age of the stand in which bags were deployed (p = 0.36) had a detectable effect on rates of litter decomposition.more » « less
-
The influence of nutrient availability on transpiration is not well understood, in spite of the importance of transpiration to forest water budgets. Soil nutrients have the potential to affect tree water use through indirect effects on leaf area or stomatal conductance. For example, following addition of calcium silicate to a watershed at Hubbard Brook, in New Hampshire, streamflow was reduced for 3 years, which was attributed to a 25% increase in evapotranspiration associated with increased foliar production. The first objective of this study was to quantify the effect of nutrient availability on sap flux density in a nitrogen, phosphorus, and calcium addition experiment in New Hampshire in which tree diameter growth, foliar chemistry, and soil nutrient availability had responded to treatments. We measured sap flux density in American beech ( Fagus grandifolia, Ehr.), red maple ( Acer rubrum L.), sugar maple ( Acer saccharum Marsh.), white birch ( Betula papyrifera Marsh.), or yellow birch (Betula alleghaniensis Britton.) trees, over five years of experiments in five stands distributed across three sites. In 2018, 3 years after a calcium silicate addition, sap flux density averaged 36% higher in trees in the treatment than the control plot, but this effect was not very significant ( p = 0.07). Our second objective was to determine whether this failure to detect effects with greater statistical confidence was due to small effect sizes or high variability among trees. We found that tree-to-tree variability was high, with coefficients of variation averaging 39% within treatment plots. Depending on the species and year of the study, the minimum difference in sap flux density detectable with our observed variability ranged from 46% to 352%, for a simple ANOVA. We analyzed other studies reported in the literature that compared tree water use among species or treatments and found detectable differences ranging from 16% to 78%. Future sap flux density studies could benefit from power analyses to guide sampling intensity. Including pretreatment data, in the case of manipulative studies, would also increase statistical power.more » « less
-
We are conducting nutrient manipulations in three study sites in the White Mountain National Forest in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook. We monitored foliar chemistry in 12 of our stands (excluding C3) pre-treatment (2008-2010) and post-treatment (2014-2016). In general, we found that foliar N concentrations were higher with N addition and foliar P concentrations were higher with P addition. More interestingly, P addition reduced foliar N concentrations and N addition reduced foliar P concentrations. Some interactive effects were observed (i.e. NxP, Species x N, Species x P, Species x N x P). This dataset contains pre- and post- treatment foliar chemistry data, and data from the analysis of quality control standard samples. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less