skip to main content


Title: EditAR: A Digital Twin Authoring Environment for Creation of AR/VR and Video Instructions from a Single Demonstration
Augmented/Virtual reality and video-based media play a vital role in the digital learning revolution to train novices in spatial tasks. However, creating content for these different media requires expertise in several fields. We present EditAR, a unified authoring, and editing environment to create content for AR, VR, and video based on a single demonstration. EditAR captures the user’s interaction within an environment and creates a digital twin, enabling users without programming backgrounds to develop content. We conducted formative interviews with both subject and media experts to design the system. The prototype was developed and reviewed by experts. We also performed a user study comparing traditional video creation with 2D video creation from 3D recordings, via a 3D editor, which uses freehand interaction for in-headset editing. Users took 5 times less time to record instructions and preferred EditAR, along with giving significantly higher usability scores.  more » « less
Award ID(s):
1839971
NSF-PAR ID:
10396711
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
Page Range / eLocation ID:
326 to 335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The environment, science, technology, engineering, arts, and mathematics fields (a collection of fields we call E-STEAM) continue to grow and remain economically and ecologically important. However, historically excluded groups remain underrepresented in science and technology professions, particularly in environmental and digital media fields. Consequently, building pathways for historically excluded students to enter economically viable and ecologically influential E-STEAM professions is critically important. These new pathways hold promise for increasing innovation within these fields and ensuring a multiplicity of representation as these fields are shaped and reshaped to attend to the plural interests of diverse communities. Consequently, this conceptual paper describes an eco-digital storytelling (EDS) approach to engaging historically excluded populations in science, technology, engineering, and mathematics (STEM). This approach offers structured learning opportunities connected to learner interests and community needs with the aim of increasing E-STEAM identity and career interest of teens from groups historically excluded from E-STEAM fields. E-STEAM identity is a meaning one can attach to oneself or that can be ascribed externally by others as individuals interact and engage in E-STEAM fields in ways that foreground the environment. The EDS approach leverages community-based action, technology and digital media, and arts and storytelling as entry points for engaging learners. EDS is designed to increase teens’ content knowledge within multiple E-STEAM fields and to provide numerous technology-rich experiences in both application of geospatial technologies (i.e., GPS, interactive maps) and digital media creation (i.e., video, animation, ArcGIS StoryMaps) as a way to shape teens’ cultural learning pathways. Examples of rich digital media presentations developed to communicate the EDS approach and local environmental opportunities, challenges, and projects are provided that exemplify how both participation in and communication of environmental action can contribute to more promising and sustainable futures. 
    more » « less
  2. Recent advances in Augmented Reality (AR) devices and their maturity as a technology offers new modalities for interaction between learners and their learning environments. Such capabilities are particularly important for learning that involves hands-on activities where there is a compelling need to: (a) make connections between knowledge-elements that have been taught at different times, (b) apply principles and theoretical knowledge in a concrete experimental setting, (c) understand the limitations of what can be studied via models and via experiments, (d) cope with increasing shortages in teaching-support staff and instructional material at the intersection of disciplines, and (e) improve student engagement in their learning. AR devices that are integrated into training and education systems can be effectively used to deliver just-in-time informatics to augment physical workspaces and learning environments with virtual artifacts. We present a system that demonstrates a solution to a critical registration problem and enables a multi-disciplinary team to develop the pedagogical content without the need for extensive coding. The most popular approach for developing AR applications is to develop a game using a standard game engine such as UNITY or UNREAL. These engines offer a powerful environment for developing a large variety of games and an exhaustive library of digital assets. In contrast, the framework we offer supports a limited range of human environment interactions that are suitable and effective for training and education. Our system offers four important capabilities – annotation, navigation, guidance, and operator safety. These capabilities are presented and described in detail. The above framework motivates a change of focus – from game development to AR content development. While game development is an intensive activity that involves extensive programming, AR content development is a multi-disciplinary activity that requires contributions from a large team of graphics designers, content creators, domain experts, pedagogy experts, and learning evaluators. We have demonstrated that such a multi-disciplinary team of experts working with our framework can use popular content creation tools to design and develop the virtual artifacts required for the AR system. These artifacts can be archived in a standard relational database and hosted on robust cloud-based backend systems for scale up. The AR content creators can own their content and Non-fungible Tokens to sequence the presentations either to improve pedagogical novelty or to personalize the learning. 
    more » « less
  3. Recent advances in Augmented Reality (AR) devices and their maturity as a technology offers new modalities for interaction between learners and their learning environments. Such capabilities are particularly important for learning that involves hands-on activities where there is a compelling need to: (a) make connections between knowledge-elements that have been taught at different times, (b) apply principles and theoretical knowledge in a concrete experimental setting, (c) understand the limitations of what can be studied via models and via experiments, (d) cope with increasing shortages in teaching-support staff and instructional material at the intersection of disciplines, and (e) improve student engagement in their learning. AR devices that are integrated into training and education systems can be effectively used to deliver just-in-time informatics to augment physical workspaces and learning environments with virtual artifacts. We present a system that demonstrates a solution to a critical registration problem and enables a multi-disciplinary team to develop the pedagogical content without the need for extensive coding. The most popular approach for developing AR applications is to develop a game using a standard game engine such as UNITY or UNREAL. These engines offer a powerful environment for developing a large variety of games and an exhaustive library of digital assets. In contrast, the framework we offer supports a limited range of human environment interactions that are suitable and effective for training and education. Our system offers four important capabilities – annotation, navigation, guidance, and operator safety. These capabilities are presented and described in detail. The above framework motivates a change of focus – from game development to AR content development. While game development is an intensive activity that involves extensive programming, AR content development is a multi-disciplinary activity that requires contributions from a large team of graphics designers, content creators, domain experts, pedagogy experts, and learning evaluators. We have demonstrated that such a multi-disciplinary team of experts working with our framework can use popular content creation tools to design and develop the virtual artifacts required for the AR system. These artifacts can be archived in a standard relational database and hosted on robust cloud-based backend systems for scale up. The AR content creators can own their content and Non-fungible Tokens to sequence the presentations either to improve pedagogical novelty or to personalize the learning. 
    more » « less
  4. Interactivity and player experience are inextricably entwined with the creation of compelling narratives for interactive digital media. Narrative shapes and buttresses many such experiences, and therefore designers must construct compelling narrative arcs while carefully considering the effects of interaction on both the story and the player. As the narrative becomes more structurally complex, due to choice-based branching and other player actions, designers need to employ commensurately capable models and visualizations to keep track of that growing complexity. However, previous models of interactive narrative have failed to fully capture interactive elements with automated, operationalized visualizations. In this paper, we describe an algorithm for automated construction of a framework-driven, graph-based representation of interactive narrative. This representation more fully and transparently models structural and interactive features of the narrative than did prior approaches. We present an initial evaluation of this representation, based on modified cognitive walkthroughs performed by interactive narrative design and research experts from our research team, and we describe the takeaways for future improvement on interactive narrative modeling and analysis. 
    more » « less
  5. Process safety has become a critical component of chemical engineering education. However, students may find it difficult to fully understand the ramifications of decisions they make during classroom exercises due to their lack of real world experience. Use of an immersive digital environment where students could role play as chemical engineering employees making process safety decisions could be one method of achieving this goal. Through this experience, students could observe the outcomes of their decisions in a safe, controlled environment without the disastrous real-world consequences that could come from making a mistake. This digital environment could have further features, such as time constraints or interactions with other characters, to make the experience feel more authentic than an in-class discussion or case study. In order to evaluate the efficacy of such a virtual environment, a portion of this work centered around the creation of the Engineering Process Safety Research Instrument (EPSRI). The instrument asks participants to evaluate process safety dilemmas and rank a set of considerations based on how influential they were in their decision-making process. The instrument then classifies each decision based on the stages of Kohlberg’s moral development theory, ranging from pre-conventional (i.e. more self-centered) thinking to post-conventional (i.e. more global) thinking. This instrument will be used to assess how students’ thinking about process safety decisions changes as a result of engaging in the virtual safety decision making environment. This paper will summarize the progress since the project’s start in summer 2017,, highlighting the work completed in development and validation of the EPSRI. This process included content validation, think-aloud studies to improve clarity of the instrument, and factor analysis based on a large scale implementation at multiple universities. The paper will also discuss the development of the minimum viable product digital process safety experience, including establishment of learning outcomes and the mechanics that reinforce those outcomes. By presenting these findings, we intend to spread awareness of the EPSRI, which can evaluate the safety decisions of chemical engineering students while having the potential to launch discussions about safety and ethics in other engineering disciplines. We also hope that these results will provide educators with insights into how to translate educational objectives to elements of a digital learning environment through collaboration with digital media companies. 
    more » « less