skip to main content


Title: Balanced wavelength modulated Zeeman spectroscopy for oxygen detection

In this paper, we present the development and testing of a balanced Zeeman spectroscopy method utilizing wavelength modulation for selective detection of paramagnetic molecules. We perform balanced detection via differential transmission measurement of right-handed circularly polarized and left-handed circularly polarized light and compare the performance of our system to the Faraday rotation spectroscopy technique. The method is tested using oxygen detection at 762 nm and can provide real-time oxygen or other paramagnetic species detection for a variety of applications.

 
more » « less
NSF-PAR ID:
10396838
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
5
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 7226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The giant circular photo‐galvanic effect is realized in chiral metals when illuminated by circularly polarized light. However, the structure itself is not switchable nor is the crystal chirality in the adjacent chiral domains. Here spindle‐shaped liquid crystalline elastomer microparticles that can switch from prolate to spherical to oblate reversibly upon heating above the nematic to isotropic transition temperature are synthesized. When arranged in a honeycomb lattice, the continuous shape change of the microparticles leads to lattice reconfiguration, from a right‐handed chiral state to an achiral one, then to a left‐handed chiral state, without breaking the translational symmetry. Accordingly, the sign of rotation of the polarized light passing through the lattices changes as measured by time‐domain terahertz spectroscopy. Further, it can locally alter the chirality in the adjacent domains using near‐infrared light illumination. The reconfigurable chiral microarrays will allow us to explore non‐trivial symmetry‐protected transport modes of topological lattices at the light–matter interface. Specifically, the ability to controllably create chiral states at the boundary of the achiral/chiral domains will lead to rich structures emerging from the interplay of symmetry and topology.

     
    more » « less
  2. Plasmon-phonon coupling between metamaterials and molecular vibrations provides a new path for studying mid-infrared light-matter interactions and molecular detection. So far, the coupling between the plasmonic resonances of metamaterials and the phonon vibrational modes of molecules has been realized under linearly polarized light. Here, mid-infrared chiral plasmonic metasurfaces with high circular dichroism (CD) in absorption over 0.65 in the frequency range of 50 to 60 THz are demonstrated to strongly interact with the phonon vibrational resonance of polymethyl methacrylate (PMMA) molecules at 52 THz, under both left-handed and right-handed circularly polarized (LCP and RCP) light. The mode splitting features in the absorption spectra of the coupled metasurface-PMMA systems under both circular polarizations are studied in PMMA layers with different thicknesses. The relation between the mode splitting gap and the PMMA thickness is also revealed. The demonstrated results can be applied in areas of chiral molecular sensing, thermal emission, and thermal energy harvesting.

     
    more » « less
  3. Chiral metamaterials in the mid-infrared wavelength range have tremendous potential for studying thermal emission manipulation and molecular vibration sensing. Here, we present one type of chiral plasmonic metasurface absorber with high circular dichroism (CD) in absorption of more than 0.56 across the mid-infrared wavelength range of 5–5.5 µm. The demonstrated chiral metasurface absorbers exhibit a maximum chiral absorption of 0.87 and a maximum CD in absorption of around 0.60. By adjusting the geometric parameters of the unit cell structure of the metasurface, the chiral absorption peak can be shifted to different wavelengths. Due to the strong chiroptical response, the thermal analysis of the designed chiral metasurface absorber further shows the large temperature difference between the left-handed and right-handed circularly polarized light. The demonstrated results can be utilized in various applications such as molecular detection, mid-infrared filter, thermal emission, and chiral imaging.

     
    more » « less
  4. Abstract

    Optical chirality is an effective means in screening molecules and their enantiomers in bioengineering, and recently has garnered attention as an implementation of qubits in quantum information processing. The conventional detection of circularly polarized light (CPL) is based on phase retardation and polarization separation using multiple optical components. An intrinsic solid‐state chirality detection device would be favorable for easier integration and implementation. Optical spin injection to the spin‐momentum‐locked topological surface states of topological insulators (TIs) by circularly polarized light leads to a directional DC photocurrent and hence possible circular polarization detection. However, this DC photocurrent is also accompanied by other photo‐responses. Here, a photodetection strategy using a TI transistor which senses CPL without the use of any additional components is demonstrated, it achieves a uniform response over the entire device with a sensitivity ≈5.6%. The Stokes parameters can also be extracted by arithmetic operation of photocurrents obtained with different bias and gate for a complete characterization of a polarized light beam. Therefore, this method enables chirality detection and Stokes parameter analysis using a single device. The proposed miniaturized intrinsic chirality detectors facilitate polarimetry sensing in applications from circular dichroism spectroscopy to biomedical diagnosis.

     
    more » « less
  5. Abstract Motivated by the recent excitement around the physics of twisted transition metal dichalcogenide (TMD) multilayer systems, we study strongly correlated phases of TMD heterobilayers under the influence of light. We consider both waveguide light and circularly polarized light. The former allows for longitudinally polarized light, which in the high frequency limit can be used to selectively modify interlayer hoppings in a tight-binding model. We argue based on quasi-degenerate perturbation theory that changes to the interlayer hoppings can be captured as a modulation to the strength of the moiré potential in a continuum model. As a consequence, waveguide light can be used to drive transitions between a myriad of different magnetic phases, including a transition from a 120 ∘ Neel phase to a stripe ordered magnetic phase, or from a spin density wave phase to a paramagnetic phase, among others. When the system is subjected to circularly polarized light we find that the effective mass of the active TMD layer is modified by an applied electromagnetic field. By simultaneously applying waveguide light and circularly polarized light to a system, one has a high level of control in moving through the phase diagram in-situ. Lastly, we comment on the experimental feasibility of Floquet state preparation and argue that it is within reach of available techniques when the system is coupled to a judiciously chosen bath. 
    more » « less