skip to main content


Title: Scaling of Turbulence and Microphysics in a Convection–Cloud Chamber of Varying Height
Abstract

The convection–cloud chamber enables measurement of aerosol and cloud microphysics, as well as their interactions, within a turbulent environment under steady‐state conditions. Increasing the size of a convection–cloud chamber, while holding the imposed temperature difference constant, leads to increased Rayleigh, Reynolds and Nusselt numbers. Large–eddy simulation coupled with a bin microphysics model allows the influence of increased velocity, time, and spatial scales on cloud microphysical properties to be explored. Simulations of a convection–cloud chamber, with fixed aspect ratio and increasing heights ofH = 1, 2, 4, and (for dry conditions only) 8 m are performed. The key findings are: Velocity fluctuations scale asH1/3, consistent with the Deardorff expression for convective velocity, and implying that the turbulence correlation time scales asH2/3. Temperature and other scalar fluctuations scale asH−3/7. Droplet size distributions from chambers of different sizes can be matched by adjusting the total aerosol injection rate as the horizontal cross‐sectional area (i.e., asH2for constant aspect ratio). Injection of aerosols at a point versus distributed throughout the volume makes no difference for polluted conditions, but can lead to cloud droplet size distribution broadening in clean conditions. Cloud droplet growth by collision and coalescence leads to a broader right tail of the distribution compared to condensation growth alone, and this tail increases in magnitude and extent monotonically as the increase of chamber height. These results also have implications for scaling within turbulent, cloudy mixed‐layers in the atmosphere, such as fog layers.

 
more » « less
Award ID(s):
2133229
NSF-PAR ID:
10396924
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
15
Issue:
2
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Water vapor supersaturation in clouds is a random variable that drives activation and growth of cloud droplets. The Pi Convection–Cloud Chamber generates a turbulent cloud with a microphysical steady state that can be varied from clean to polluted by adjusting the aerosol injection rate. The supersaturation distribution and its moments, e.g., mean and variance, are investigated for varying cloud microphysical conditions. High-speed and collocated Eulerian measurements of temperature and water vapor concentration are combined to obtain the temporally resolved supersaturation distribution. This allows quantification of the contributions of variances and covariances between water vapor and temperature. Results are consistent with expectations for a convection chamber, with strong correlation between water vapor and temperature; departures from ideal behavior can be explained as resulting from dry regions on the warm boundary, analogous to entrainment. The saturation ratio distribution is measured under conditions that show monotonic increase of liquid water content and decrease of mean droplet diameter with increasing aerosol injection rate. The change in liquid water content is proportional to the change in water vapor concentration between no-cloud and cloudy conditions. Variability in the supersaturation remains even after cloud droplets are formed, and no significant buffering is observed. Results are interpreted in terms of a cloud microphysical Damköhler number (Da), under conditions corresponding to, i.e., the slow-microphysics regime. This implies that clouds with very clean regions, such thatis satisfied, will experience supersaturation fluctuations without them being buffered by cloud droplet growth.

    Significance Statement

    The saturation ratio (humidity) in clouds controls the growth rate and formation of cloud droplets. When air in a turbulent cloud mixes, the humidity varies in space and time throughout the cloud. This is important because it means cloud droplets experience different growth histories, thereby resulting in broader size distributions. It is often assumed that growth and evaporation of cloud droplets buffers out some of the humidity variations. Measuring these variations has been difficult, especially in the field. The purpose of this study is to measure the saturation ratio distribution in clouds with a range of conditions. We measure the in-cloud saturation ratio using a convection cloud chamber with clean to polluted cloud properties. We found in clouds with low concentrations of droplets that the variations in the saturation ratio are not suppressed.

     
    more » « less
  2. Abstract

    Collisional growth of cloud droplets is an essential yet uncertain process for drizzle and precipitation formation. To improve the quantitative understanding of this key component of cloud‐aerosol‐turbulence interactions, observational studies of collision‐coalescence in a controlled laboratory environment are needed. In an existing convection‐cloud chamber (the Pi Chamber), collisional growth is limited by low liquid water content and short droplet residence times. In this work, we use numerical simulations to explore various configurations of a convection‐cloud chamber that may intensify collision‐coalescence. We employ a large‐eddy simulation (LES) model with a size‐resolved (bin) cloud microphysics scheme to explore how cloud properties and the intensity of collision‐coalescence are affected by the chamber size and aspect ratio, surface roughness, side‐wall wetness, side‐wall temperature arrangement, and aerosol injection rate. Simulations without condensation and evaporation within the domain are first performed to explore the turbulence dynamics and wall fluxes. The LES wall fluxes are used to modify the Scalar Flux‐budget Model, which is then applied to demonstrate the need for non‐uniform side‐wall temperature (two side walls as warm as the bottom and the two others as cold as the top) to maintain high supersaturation in a tall chamber. The results of LES with full cloud microphysics reveal that collision‐coalescence is greatly enhanced by employing a taller chamber with saturated side walls, non‐uniform side‐wall temperature, and rough surfaces. For the conditions explored, although lowering the aerosol injection rate broadens the droplet size distribution, favoring collision‐coalescence, the reduced droplet number concentration decreases the frequency of collisions.

     
    more » « less
  3. Abstract

    Precipitation efficiency and optical properties of clouds, both central to determining Earth's weather and climate, depend on the size distribution of cloud particles. In this work theoretical expressions for cloud droplet size distribution shape are evaluated using measurements from controlled experiments in a convective‐cloud chamber. The experiments are a unique opportunity to constrain theory because they are in steady‐state and because the initial and boundary conditions are well characterized compared to typical atmospheric measurements. Three theoretical distributions obtained from a Langevin drift‐diffusion approach to cloud formation via stochastic condensation are tested: (a) stochastic condensation with a constant removal time‐scale; (b) stochastic condensation with a size‐dependent removal time‐scale; (c) droplet growth in a fixed supersaturation condition and with size‐dependent removal. In addition, a similar Weibull distribution that can be obtained from the drift‐diffusion approach, as well as from mechanism‐independent probabilistic arguments (e.g., maximum entropy), is tested as a fourth hypothesis. Statistical techniques such as theχ2test, sum of squared errors of prediction, and residual analysis are employed to judge relative success or failure of the theoretical distributions to describe the experimental data. An extensive set of cloud droplet size distributions are measured under different aerosol injection rates. Five different aerosol injection rates are run both for size‐selected aerosol particles, and six aerosol injection rates are run for broad‐distribution, polydisperse aerosol particles. In relative comparison, the most favourable comparison to the measurements is the expression for stochastic condensation with size‐dependent droplet removal rate. However, even this optimal distribution breaks down for broad aerosol size distributions, primarily due to deviations from the measured large‐droplet tail. A possible explanation for the deviation is the Ostwald ripening effect coupled with deactivation/activation in polluted cloud conditions.

     
    more » « less
  4. Abstract

    Turbulent fluctuations of scalar and velocity fields are critical for cloud microphysical processes, e.g., droplet activation and size distribution evolution, and can therefore influence cloud radiative forcing and precipitation formation. Lagrangian and Eulerian water vapor, temperature, and supersaturation statistics are investigated in direct numerical simulations (DNS) of turbulent Rayleigh–Bénard convection in the Pi Convection Cloud Chamber to provide a foundation for parameterizing subgrid-scale fluctuations in atmospheric models. A subgrid model for water vapor and temperature variances and covariance and supersaturation variance is proposed, valid for both clear and cloudy conditions. Evaluation of phase change contributions through an a priori test using DNS data shows good performance of the model. Supersaturation is a nonlinear function of temperature and water vapor, and relative external fluxes of water vapor and heat (e.g., during entrainment-mixing and phase change) influence turbulent supersaturation fluctuations. Although supersaturation has autocorrelation and structure functions similar to the independent scalars (temperature and water vapor), the autocorrelation time scale of supersaturation differs. Relative scalar fluxes in DNS without cloud make supersaturation PDFs less skewed than the adiabatic case, where they are highly negatively skewed. However, droplet condensation changes the PDF shape response: it becomes positively skewed for the adiabatic case and negatively skewed when the sidewall relative fluxes are large. Condensation also increases correlations between water vapor and temperature in the presence of relative scalar fluxes but decreases correlations for the adiabatic case. These changes in correlation suppress supersaturation variability for the nonadiabatic cases and increase it for the adiabatic case. Implications of this work for subgrid microphysics modeling using a Lagrangian stochastic scheme are also discussed.

     
    more » « less
  5. Abstract

    The subgrid-scale (SGS) scalar variance represents the “unmixedness” of the unresolved small scales in large-eddy simulations (LES) of turbulent flows. Supersaturation variance can play an important role in the activation, growth, and evaporation of cloud droplets in a turbulent environment, and therefore efforts are being made to include SGS supersaturation fluctuations in microphysics models. We present results from a priori tests of SGS scalar variance models using data collected in turbulent Rayleigh–Bénard convection in the Michigan Tech Pi chamber for Rayleigh numbers Ra ∼ 108–109. Data from an array of 10 thermistors were spatially filtered and used to calculate the true SGS scalar variance, a scale-similarity model, and a gradient model for dimensionless filter widths ofh/Δ = 25, 14.3, and 10 (wherehis the height of the chamber and Δ is the spatial filter width). The gradient model was found to have fairly low correlations (ρ∼ 0.2), with the most probable values departing significantly from the one-to-one line in joint probability density functions (JPDFs). However, the scale-similarity model was found to have good behavior in JPDFs and was highly correlated (ρ∼ 0.8) with the true SGS variance. Results of the a priori tests were robust across the parameter space considered, with little dependence on Ra andh/Δ. The similarity model, which only requires an additional test filtering operation, is therefore a promising approach for modeling the SGS scalar variance in LES of cloud turbulence and other related flows.

     
    more » « less