skip to main content


Title: The simulated catalogue of optical transients and correlated hosts (SCOTCH)
ABSTRACT

As we observe a rapidly growing number of astrophysical transients, we learn more about the diverse host galaxy environments in which they occur. Host galaxy information can be used to purify samples of cosmological Type Ia supernovae, uncover the progenitor systems of individual classes, and facilitate low-latency follow-up of rare and peculiar explosions. In this work, we develop a novel data-driven methodology to simulate the time-domain sky that includes detailed modelling of the probability density function for multiple transient classes conditioned on host galaxy magnitudes, colours, star formation rates, and masses. We have designed these simulations to optimize photometric classification and analysis in upcoming large synoptic surveys. We integrate host galaxy information into the snana simulation framework to construct the simulated catalogue of optical transients and correlated hosts (SCOTCH, a publicly available catalogue of 5-million idealized transient light curves in LSST passbands and their host galaxy properties over the redshift range 0 < z < 3. This catalogue includes supernovae, tidal disruption events, kilonovae, and active galactic nuclei. Each light curve consists of true top-of-the-galaxy magnitudes sampled with high (≲2 d) cadence. In conjunction with SCOTCH, we also release an associated set of tutorials and transient-specific libraries to enable simulations of arbitrary space- and ground-based surveys. Our methodology is being used to test critical science infrastructure in advance of surveys by the Vera C. Rubin Observatory and the Nancy G. Roman Space Telescope.

 
more » « less
NSF-PAR ID:
10396971
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2887-2912
Size(s):
["p. 2887-2912"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multicolor PanSTARRS1 griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host–galaxy associations, redshifts, spectroscopic and/or photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z ≈ 0.5. We present relative SN rates from YSE’s magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multisurvey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (∼71%) SNe Ia, 339 (∼23%) SNe II, and 96 (∼6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time. 
    more » « less
  2. Abstract

    Transient accretion events onto supermassive black holes (SMBHs), such as tidal disruption events (TDEs), Bowen Fluorescence Flares (BFFs), and active galactic nuclei (AGNs), which are accompanied by sudden increases of activity, offer a new window onto the SMBH population, accretion physics, and stellar dynamics in galaxy centers. However, such transients are rare and finding them in wide-field transient surveys is challenging. Here we present the results of a systematic real-time search for SMBH-related transients in Zwicky Transient Facility (ZTF) public alerts, using various search queries. We examined 345 rising events coincident with a galaxy nucleus, with no history of previous activity, of which 223 were spectroscopically classified. Of those, five (2.2%) were TDEs, one (0.5%) was a BFF, and two (0.9%) were AGN flares. Limiting the search to blue events, the fraction of TDEs nearly doubles to 4.1%, and no TDEs are missed. Limiting the search further to candidate post-starburst galaxies increases the relative number of TDEs to 16.7%, but the absolute numbers in such a search are small. The main contamination source is supernovae (95.1% of classified events), of which the majority (82.2% of supernovae) are of Type Ia. In a comparison set of 39 events with limited photometric history, the AGN contamination increases to ∼30%. Host galaxy offset is not a significant discriminant of TDEs in current ZTF data, but might be useful in higher-resolution data. Our results can be used to quantify the efficiency of various SMBH-related transient search strategies in optical surveys such as ZTF and the Legacy Survey of Space and Time.

     
    more » « less
  3. ABSTRACT

    New time-domain surveys, such as the Vera C. Rubin Observatory Legacy Survey of Space and Time, will observe millions of transient alerts each night, making standard approaches of visually identifying new and interesting transients infeasible. We present two novel methods of automatically detecting anomalous transient light curves in real-time. Both methods are based on the simple idea that if the light curves from a known population of transients can be accurately modelled, any deviations from model predictions are likely anomalies. The first modelling approach is a probabilistic neural network built using Temporal Convolutional Networks (TCNs) and the second is an interpretable Bayesian parametric model of a transient. We demonstrate our methods’ ability to provide anomaly scores as a function of time on light curves from the Zwicky Transient Facility. We show that the flexibility of neural networks, the attribute that makes them such a powerful tool for many regression tasks, is what makes them less suitable for anomaly detection when compared with our parametric model. The parametric model is able to identify anomalies with respect to common supernova classes with high precision and recall scores, achieving area under the precision-recall curves above 0.79 for most rare classes such as kilonovae, tidal disruption events, intermediate luminosity transients, and pair-instability supernovae. Our ability to identify anomalies improves over the lifetime of the light curves. Our framework, used in conjunction with transient classifiers, will enable fast and prioritized followup of unusual transients from new large-scale surveys.

     
    more » « less
  4. Abstract

    Substantial effort has been devoted to the characterization of transient phenomena from photometric information. Automated approaches to this problem have taken advantage of complete phase coverage of an event, limiting their use for triggering rapid follow-up of ongoing phenomena. In this work, we introduce a neural network with a single recurrent layer designed explicitly for early photometric classification of supernovae (SNe). Our algorithm leverages transfer learning to account for model misspecification, host-galaxy photometry to solve the data-scarcity problem soon after discovery, and a custom weighted loss to prioritize accurate early classification. We first train our algorithm using state-of-the-art transient and host-galaxy simulations, then adapt its weights and validate it on the spectroscopically confirmed SNe Ia, SNe II, and SNe Ib/c from the Zwicky Transient Facility Bright Transient Survey. On observed data, our method achieves an overall accuracy of 82% ± 2% within 3 days of an event’s discovery, and an accuracy of 87% ± 5% within 30 days of discovery. At both early and late phases, our method achieves comparable or superior results to the leading classification algorithms with a simpler network architecture. These results help pave the way for rapid photometric and spectroscopic follow-up of scientifically valuable transients discovered in massive synoptic surveys.

     
    more » « less
  5. ABSTRACT The 5-yr Dark Energy Survey Supernova Programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterizing the host galaxies of transients plays a key role in their classification, the study of their formation mechanisms, and the cosmological analyses. To derive accurate host galaxy properties, we create depth-optimized coadds using single-epoch DES-SN images that are selected based on sky and atmospheric conditions. For each of the five DES-SN seasons, a separate coadd is made from the other four seasons such that each SN has a corresponding deep coadd with no contaminating SN emission. The coadds reach limiting magnitudes of order ∼27 in g band, and have a much smaller magnitude uncertainty than the previous DES-SN host templates, particularly for faint objects. We present the resulting multiband photometry of host galaxies for samples of spectroscopically confirmed type Ia (SNe Ia), core-collapse (CCSNe), and superluminous (SLSNe) as well as rapidly evolving transients (RETs) discovered by DES-SN. We derive host galaxy stellar masses and probabilistically compare stellar-mass distributions to samples from other surveys. We find that the DES spectroscopically confirmed sample of SNe Ia selects preferentially fewer high-mass hosts at high-redshift compared to other surveys, while at low redshift the distributions are consistent. DES CCSNe and SLSNe hosts are similar to other samples, while RET hosts are unlike the hosts of any other transients, although these differences have not been disentangled from selection effects. 
    more » « less