skip to main content


Title: Growing a ‘cosmic beast’: observations and simulations of MACS J0717.5+3745
ABSTRACT

We present a gravitational lensing and X-ray analysis of a massive galaxy cluster and its surroundings. The core of MACS J0717.5+3745 ($M(R\lt 1\, {\rm Mpc})\sim$ $2 \times 10^{15}\, \, {\rm M}_{\odot }$, $z$ = 0.54) is already known to contain four merging components. We show that this is surrounded by at least seven additional substructures with masses ranging $3.8{-}6.5\times 10^{13}\, \, {\rm M}_{\odot }$, at projected radii 1.6–4.9 Mpc. We compare MACS J0717 to mock lensing and X-ray observations of similarly rich clusters in cosmological simulations. The low gas fraction of substructures predicted by simulations turns out to match our observed values of 1–$4{{\ \rm per\ cent}}$. Comparing our data to three similar simulated haloes, we infer a typical growth rate and substructure infall velocity. That suggests MACS J0717 could evolve into a system similar to, but more massive than, Abell 2744 by $z$ = 0.31, and into a ∼ $10^{16}\, \, {\rm M}_{\odot }$ supercluster by $z$ = 0. The radial distribution of infalling substructure suggests that merger events are strongly episodic; however, we find that the smooth accretion of surrounding material remains the main source of mass growth even for such massive clusters.

 
more » « less
NSF-PAR ID:
10397208
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
481
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2901-2917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Ultraluminous X-ray sources (ULXs) in globular clusters (GCs) are low-mass X-ray binaries that achieve high X-ray luminosities through a currently uncertain accretion mechanism. Using archival Chandra and Hubble Space Telescope observations, we perform a volume-limited search (≲70 Mpc) of 21 of the most massive ($\gt 10^{11.5} \, \mathrm{M}_\odot$) early-type galaxies to identify ULXs hosted by GC candidates. We find a total of 34 ULX candidates above the expected background within five times the effective radius of each galaxy, with 10 of these ($\sim 29.4{{\ \rm per\ cent}}$) potentially hosted by a GC. A comparison of the spatial and luminosity distributions of these new candidate GC ULXs with previously identified GC ULXs shows that they are similar: both samples peak at LX ∼ a few × 1039 erg s−1 and are typically located within a few effective radii of their host galaxies.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where $M_{\star } \propto M_{\rm vir}^{\alpha }$. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in $M_\star \sim 10^{9-10} \, \mathrm{M}_{\odot }$ galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations. 
    more » « less
  3. ABSTRACT

    We use two independent galaxy-formation simulations, flares, a cosmological hydrodynamical simulation, and shark, a semi-analytic model, to explore how well the JWST will be able to uncover the existence and parameters of the star-forming main sequence (SFS) at z = 5 → 10, i.e. shape, scatter, normalization. Using two independent simulations allows us to isolate predictions (e.g. stellar mass, star formation rate, SFR, luminosity functions) that are robust to or highly dependent on the implementation of the physics of galaxy formation. Both simulations predict that JWST can observe ≥70–90 per cent (for shark and flares, respectively) of galaxies up to z ∼ 10 (down to stellar masses of ${\approx}10^{8.3}\rm M_{\odot }$ and SFRs of ${\approx}10^{0.5}{\rm M}_{\odot }\,{\rm yr}^{-1}$) in modest integration times and given current proposed survey areas (e.g. the Web COSMOS 0.6 deg2) to accurately constrain the parameters of the SFS. Although both simulations predict qualitatively similar distributions of stellar mass and SFR. There are important quantitative differences, such as the abundance of massive, star-forming galaxies with flares predicting a higher abundance than shark; the early onset of quenching as a result of black hole growth in flares (at z ≈ 8), not seen in shark until much lower redshifts; and the implementation of synthetic photometry with flares predicting more JWST-detected galaxies (∼90 per cent) than shark (∼70 per cent) at z = 10. JWST observations will distinguish between these models, leading to a significant improvement upon our understanding of the formation of the very first galaxies.

     
    more » « less
  4. ABSTRACT

    We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies $(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot$ at z = 0) as part of the ‘Feedback in Realistic Environment’ (FIRE) project. Compact (r1/2 < 30 pc), relatively massive (0.5 × 105 ≲ M⋆/M⊙ ≲ 5 × 105), self-bound stellar clusters form at 11 ≳ z ≳ 5 in progenitors with $M_{\rm vir} \approx 10^9\, \mathrm{M}_{\odot }$. Cluster formation is triggered when at least $10^7\, \mathrm{M}_{\odot }$ of dense, turbulent gas reaches $\Sigma _{\rm gas} \approx 10^4\, {\rm M}_\odot \, {\rm pc}^{-2}$ as a result of the compressive effects of supernova feedback or from cloud–cloud collisions. The clusters can survive for $2-3\, {\rm Gyr}$; absent numerical effects, they could possibly survive substantially longer, perhaps to z = 0. The longest lived clusters are those that form at significant distance – several hundreds of pc – from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter haloes as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in Hubble Space Telescope lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with JWST. By contrast, the star clusters’ host galaxies will remain undetectable.

     
    more » « less
  5. ABSTRACT

    Direct collapse black holes (BHs) are promising candidates for producing massive z ≳ 6 quasars, but their formation requires fine-tuned conditions. In this work, we use cosmological zoom simulations to study systematically the impact of requiring: (1) low gas angular momentum (spin), and (2) a minimum incident Lyman–Werner (LW) flux in order to form BH seeds. We probe the formation of seeds (with initial masses of $M_{\rm seed} \sim 10^4\!-\!10^6\, \mathrm{M}_{\odot }\, h^{-1})$ in haloes with a total mass >3000 × Mseed and a dense, metal-poor gas mass >5 × Mseed. Within this framework, we find that the seed-forming haloes have a prior history of star formation and metal enrichment, but they also contain pockets of dense, metal-poor gas. When seeding is further restricted to haloes with low gas spins, the number of seeds formed is suppressed by factors of ∼6 compared to the baseline model, regardless of the seed mass. Seed formation is much more strongly impacted if the dense, metal-poor gas is required to have a critical LW flux (Jcrit). Even for Jcrit values as low as 50J21, no $8\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$ seeds are formed. While lower mass ($1.25\times 10^{4},1\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$) seeds do form, they are strongly suppressed (by factors of ∼10–100) compared to the baseline model at gas mass resolutions of $\sim 10^4~\mathrm{M}_{\odot }\, h^{-1}$ (with even stronger suppression at higher resolutions). As a result, BH merger rates are also similarly suppressed. Since early BH growth is dominated by mergers in our models, none of the seeds are able to grow to the supermassive regime ($\gtrsim 10^6~\mathrm{M}_{\odot }\, h^{-1}$) by z = 7. Our results hint that producing the bulk of the z ≳ 6 supermassive BH population may require alternate seeding scenarios that do not depend on the LW flux, early BH growth dominated by rapid or super-Eddington accretion, or a combination of these possibilities.

     
    more » « less