skip to main content


Title: The dynamics of innovation efforts in the early career

Although innovation is highly valued in organizations, early‐career professionals face a paradox of bringing in novel ideas, yet having varied latitude and support to see these new ideas through. Building on 35 critical‐incident‐based interviews with early‐career engineers in the United States, this study illuminates the socially situated dynamics of their innovation efforts, examining the process of such promotive proactive behaviour. We find that all participants reported some engagement in creating, championing and implementing new ideas, typically in the form of self‐initiated improvements to the tools and processes participants used in their jobs. Encouragement from direct supervisors, supportive organizational cultures and practices, job scope, time afforded and one's perceived status were key considerations in determining whether to take such initiative. Carrying out innovative work behaviours, in turn, was largely dependent on continued employee initiative and ad hoc, informal cooperation, with individual effort punctuated by influential interactions with others that often determined the perceived valence of efforts. The study adds to understanding the social interactions and perceptions of voice required for innovative work behaviour, revealing when and to whom these prerequisites are afforded. Implications for organizations' innovation capacity and new hires' participation in innovation are discussed.

 
more » « less
NSF-PAR ID:
10397228
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Creativity and Innovation Management
Volume:
32
Issue:
1
ISSN:
0963-1690
Page Range / eLocation ID:
p. 80-99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beyond engineering skills, today’s graduates are expected to have a number of professional skills by the time they enter the working world. Increasingly, innovation is one of the arenas where professional engineers should be adept at operating. However, in order to educate our students for contributing to innovation activities in their organizations, we need a better understanding of the knowledge, skills and attitudes that are relevant for early-career engineers in their development efforts. As a starting point to add to this understanding, we start by asking: what does meaningful engineering work look like in the eyes of early career engineers? We then go on to consider engineering work that is not only meaningful but also innovative, asking: What does innovative work look like in the eyes of early career engineers? Finally, we consider: How do innovative work and engineering work more generally compare? Based on qualitative in-depth semi-structured interviews, this paper analyzes the work experiences of 13 young engineers in their first years of work after graduating from universities in the United States. Interviewee-reported critical incidents of top and bottom moments, as well as experiences in creating, advancing and implementing new ideas in work, were coded into different dimensions of learning experiences according to Mezirow’s [1] transformative learning theory in order to understand better what these experiences comprise. Many positively experienced innovation efforts were related to implementing new features or components to products or process improvements, and collaboration and feedback played an important role in these efforts. Negatively experienced innovation efforts, in contrast, were related to a lack in implementation, solutions and resources. Top and bottom moments were strongly tied to the social dimension of work: top moments were typically related to camaraderie with peers or recognition coming from managers, and bottom experiences with an absence of social connections in addition to falling short of one’s own expectations. The results suggest that managers should be cognizant of the importance of social connections and feedback cycles with their young engineers who are looking for guidance and validation of their efforts. For educators, the results highlight the importance of equipping our graduates with skills suited to navigate this active, social landscape of engineering practice. There are more challenges to tackle in today’s educational settings to prepare students for the collaboration, people-coordination, presentation, and community-building skills they will need in their professional lives. 
    more » « less
  2. There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries. 
    more » « less
  3. This paper describes the structure, project initiatives, and early results of the NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University (WCU). SPIRIT is a scholarship program focused on building an interdisciplinary engineering learning community involved in extensive peer and faculty mentoring, vertically-integrated Project Based Learning (PBL), and undergraduate research experiences. The program has provided twenty-six scholarships and academic resources to a diverse group of engineering and engineering technology students. Results from several project initiatives have been promising. Recruitment efforts have resulted in a demographically diverse group of participants whose retention rates within the program have held at 82%. A vibrant learning community has organically developed where participants are provided both academic and non-academic support across several majors and grade classes. Since May 2014, SPIRIT undergraduate research projects have resulted in forty-five presentations at seven different undergraduate and professional conferences. Twenty-seven PBL and five integrated open-ended design challenges have been completed, involving several corporate sponsors and encompassing a wide-range of engineering topics. Results from a ninety-question participant survey revealed several perceived program strengths and areas of possible improvement. Overall, the participants agreed or strongly agreed that the program had been a positive experience (4.0/4.0) and had helped them to prepare for a career in engineering (3.8/4.0). Undergraduate research activities conducted through the program have helped the participants to understand the steps involved in research processes (3.8/4.0), to appreciate the need for a combination of analysis and hands-on skills (4.0/4.0), and to become more resilient toward academic challenges and obstacles (3.8/4.0). The program’s learning community helped participants build relationships with other students outside of their major (3.1/4.0) as compared to normal course communities. Several participants believed that they were more comfortable with seeking advice from upper class students within the program (3.7/4.0) as compared to upper class students outside the program (2.7/4.0). Vertically-integrated PBL activities helped participants in understanding project management techniques (3.8/4.0), teaming techniques (3.7/4.0), and to assume a leadership role on projects (3.6/4.0). Indicated areas of program improvement included the desire and need for a system of peer-review for the students’ undergraduate research papers; a perceived hindrance to benefit from “journaling” about their program experiences (3.6/4.0); and a need for continued strengthening of activities associated with graduate school application processes as well as preparations for job interviews and applications. This paper presents details of the program initiatives, a compilation of survey results with necessary discussion, and areas of possible improvement going forward. 
    more » « less
  4. Previous research has shown the importance of contextual factors for increasing employee innovativeness, but to effectively support innovative behavior, we need to also understand what forms of support are perceived as meaningful by the employees themselves. The current study investigated the experiences of 35 early-career engineers in creating, championing and implementing new ideas at the workplace. They reported relatively few instances of support that had been experienced as helpful, and nearly all of these were related to either managerial or co-worker support. This support ranged from encouragement and positive feedback to tangible help in troubleshooting and finding resources, and, in the case of managers, providing sufficient autonomy and responsibility to enable the interviewees to pursue their ideas. Managerial support was most frequently reported by those working in self-described innovative positions, whereas co-worker support was more commonly reported by those working in selfdescribed innovative environments. Formal processes and incentives were less likely to have been perceived as helpful than informal interactions with managers and co-workers. 
    more » « less
  5. Abstract

    Understanding the diffusion of innovative ideas, behaviors, and technologies could reduce disconnects between conservation science and management, such as the science‐practice gap between biodiversity research and restoration practice. To assess knowledge uptake as an indicator of diffusion of innovation in restoration practice, we conducted an online survey of two organizations focused on coastal habitat restoration: Coastal and Estuarine Research Federation (CERF) and International Coral Reef Society (ICRS). We evaluated experience restoring particular habitats, along with perceptions of the purpose of restoration, the metrics used to evaluate restoration success, and the challenges to successful restoration. We then examined the perceived importance of genetic diversity for restoration success as an indicator of knowledge‐practice transfer in conservation strategy. The practice of coastal habitat restoration diverged by organization and habitat: a higher percentage of CERF members had restored oysters, marshes, and seagrasses compared to ICRS, whereas the reverse was true for corals. Views of the purpose of restoration, the site selection process, and the challenges to successful restoration were similar. Despite similarities in perceptions of the restoration process, the two organizations had variable indications of knowledge‐practice transfer: ICRS respondents ranked the importance of genetic diversity as a restoration strategy higher than did CERF respondents. The perceived importance of genetic diversity also differed by habitat, with both CERF and ICRS respondents ranking diversity as more important for corals. The more successful transfer of knowledge to practice in the coral community indicates that the disconnect between genetic diversity research and restoration practice is surmountable. In addition, it serves as a potential strategy for promoting the spread of innovative restoration practices to achieve long‐term recovery of ecosystems.

     
    more » « less