skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tidal Dispersion in Short Estuaries
Abstract The salinity distribution of an estuary depends on the balance between the river outflow, which is seaward, and a dispersive salt flux, which is landward. The dispersive salt flux at a fixed cross‐section can be divided into shear dispersion, which is caused by spatial correlations of the cross‐sectionally varying velocity and salinity, and the tidal oscillatory salt flux, which results from the tidal correlation between the cross‐section averaged, tidally varying components of velocity and salinity. The theoretical moving plane analysis of Dronkers and van de Kreeke (1986) indicates that the oscillatory salt flux is exactly equal to the difference between the “local” shear dispersion at a fixed location and the shear dispersion which occurred elsewhere within a tidal excursion; therefore, they refer to the oscillatory salt flux as “nonlocal” dispersion. We apply their moving plane analysis to a numerical model of a short, tidally dominated estuary and provide the first quantitative confirmation of the theoretical result that the spatiotemporal variability of shear dispersion accounts for the oscillatory salt flux. Shear dispersion is localized in space and time due to the tidal variation of currents and the position of the along‐channel salinity distribution with respect to topographic features. We find that dispersion near the mouth contributes strongly to the salt balance, especially under strong river and tidal forcing. Additionally, while vertical shear dispersion produces the majority of dispersive salt flux during neap tide and high flow, lateral mechanisms provide the dominant mode of dispersion during spring tide and low flow.  more » « less
Award ID(s):
2123002 1634480
PAR ID:
10397334
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
2
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The salt balance in estuaries is maintained by the outflow from the river, which removes salt from the estuary, and dispersive processes, which drive downgradient fluxes bringing salt into the estuary. We analyzed the salt fluxes in a realistic model of the North River, a tidal salt marsh estuary, using a quasi-Lagrangian moving plane reference based on the theory of Dronkers and van de Kreeke. Our study confirms their theoretical finding that in a plane moving with the tides, all landward salt flux results directly from shear dispersion, that is, the spatial correlation between cross-sectional variations in velocity and salinity. We separated cross-sectional variations in velocity and salinity not only based on their lateral and vertical components but also by distinct regions of the cross section: the main channel and the marsh. In this way, we quantified the salt flux contributions from vertical and lateral shear dispersion, as well as from trapping—the salt flux due to the difference between the mean velocity and salinity of the main channel compared to the marsh. Trapping accounted for up to half of the total landward salt flux in the estuary during spring tides but decreased to about one-quarter during neap tides. Within the channel, the primary mode of dispersion shifted from lateral shear dispersion due to flow separation during spring tides to vertical shear dispersion due to tidal straining during neap tides. These results demonstrate the important role of topographically induced dispersion on maintaining the salt balance, particularly in tidally dominated estuaries. 
    more » « less
  2. Abstract The North River estuary (Massachusetts, USA) is a tidal marsh creek network where tidal dispersion processes dominate the salt balance. A field study using moorings, shipboard measurements, and drone surveys was conducted to characterize and quantify tidal trapping due to tributary creeks. During flood tide, saltwater propagates up the main channel and gets “trapped” in the creeks. The creeks inherit an axial salinity gradient from the time-varying salinity at their boundary with the main channel, but it is stronger than the salinity gradient of the main channel because of relatively weaker currents. The stronger salinity gradient drives a baroclinic circulation that stratifies the creeks, while the main channel remains well-mixed. Because of the creeks’ shorter geometries, tidal currents in the creeks lead those in the main channel; therefore, the creeks never fill with the saltiest water which passes the main channel junction. This velocity phase difference is enhanced by the exchange flow in the creeks, which fast-tracks the fresher surface layer in the creeks back to the main channel. Through ebb tide, the relatively fresh creek outflows introduce a negative salinity anomaly into the main channel, where it is advected downstream by the tide. Using high-resolution measurements, we empirically determine the salinity anomaly in the main channel resulting from its exchange with the creeks to calculate a dispersion rate due to trapping. Our dispersion rate is larger than theoretical estimates that neglect the exchange flow in the creeks. Trapping contributes more than half the landward salt flux in this region. 
    more » « less
  3. Abstract Delaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel‐shoal” estuary. This numerical modeling study addresses the exchange flow in this channel‐shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow driven mainly by the along‐estuary density gradient, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross‐channel flow, which strongly influences the stratification, along‐estuary salt balance, and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion and is an advective momentum source contributing to the residual circulation. Whereas the shoals make a negligible direct contribution to the exchange flow, they have an indirect influence due to the salinity gradients between the channel and the shoal. 
    more » « less
  4. Abstract A study of transport mechanisms in the oligohaline reach of the Delaware Estuary examines several locations with rapid changes in cross-sectional area that increase the horizontal salinity gradient, the exchange flow, and the upstream salt flux. This study is motivated by the proximity of municipal drinking water intakes upstream of the oligohaline range of the estuary, which can advance to just below the City of Philadelphia, PA, during low flow events. A Regional Ocean Model System (ROMS) numerical model was used to analyze the potential mechanisms of dispersion in the tidal Delaware River. While the model domain is largely within the tidal-fresh upper estuary, the domain below Philadelphia becomes oligohaline (0.5–5 psu) during low-flow events. Results found that landward transport of salt is facilitated by a combination of steady vertical shear dispersion and tidal oscillatory salt flux, with the latter becoming increasingly important approaching the upstream extent of salt intrusion. Frontogenesis is also an important intrusion mechanism in the vicinity of specific bathymetric features between km 110 and 114 near the Delaware Memorial Bridge and near km 126 near Marcus Hook. Moreover, the tidal advection of these fronts near km 117 produces strong lateral gradients that drive secondary flows and produce stronger tidal oscillatory salt flux away from the regions of frontogenesis. 
    more » « less
  5. Abstract In classic models of the tidally averaged gravitationally driven estuarine circulation, denser salty oceanic water moves up the estuary near the bottom, while less dense riverine water flows toward the ocean near the surface. Traditionally, it is assumed that the associated pressure gradient forces and salt advection are balanced by vertical mixing. This study, however, demonstrates that lateral (across the estuary width) transport processes are essential for maintaining the estuarine circulation. This is because for realistic estuarine bathymetry, the depth-integrated salt transport up the estuary is enhanced in the deeper estuary channel. A closed salt budget then requires the lateral transport of this excess salt in the deeper channel toward the estuarine flanks. To understand how such lateral transport affects the estuarine salt and momentum balances, we devise an idealized model with explicit lateral transport focusing on tidally averaged lateral mixing effects. Solutions for the along-estuary velocity and salinity are nondimensionalized to depend only on one single nondimensional parameter, referred to as the Fischer number, which describes the relative importance of lateral to vertical tidal mixing. For relatively strong lateral tidal mixing (greater Fischer number), salinity and velocity variations are predominantly vertical. For relatively weak lateral tidal mixing (smaller Fischer number), salinity and velocity variations are predominantly lateral. Overall, lateral transport greatly affects the estuarine circulation and controls the estuarine salinity intrusion length, which is demonstrated to scale inversely with the Fischer number. 
    more » « less