skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Tidal Dispersion in Short Estuaries
Abstract The salinity distribution of an estuary depends on the balance between the river outflow, which is seaward, and a dispersive salt flux, which is landward. The dispersive salt flux at a fixed cross‐section can be divided into shear dispersion, which is caused by spatial correlations of the cross‐sectionally varying velocity and salinity, and the tidal oscillatory salt flux, which results from the tidal correlation between the cross‐section averaged, tidally varying components of velocity and salinity. The theoretical moving plane analysis of Dronkers and van de Kreeke (1986) indicates that the oscillatory salt flux is exactly equal to the difference between the “local” shear dispersion at a fixed location and the shear dispersion which occurred elsewhere within a tidal excursion; therefore, they refer to the oscillatory salt flux as “nonlocal” dispersion. We apply their moving plane analysis to a numerical model of a short, tidally dominated estuary and provide the first quantitative confirmation of the theoretical result that the spatiotemporal variability of shear dispersion accounts for the oscillatory salt flux. Shear dispersion is localized in space and time due to the tidal variation of currents and the position of the along‐channel salinity distribution with respect to topographic features. We find that dispersion near the mouth contributes strongly to the salt balance, especially under strong river and tidal forcing. Additionally, while vertical shear dispersion produces the majority of dispersive salt flux during neap tide and high flow, lateral mechanisms provide the dominant mode of dispersion during spring tide and low flow.  more » « less
Award ID(s):
2123002 1634480
PAR ID:
10397334
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
2
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Delaware Bay is a large estuary with a deep, relatively narrow channel and wide, shallow banks, providing a clear example of a “channel‐shoal” estuary. This numerical modeling study addresses the exchange flow in this channel‐shoal estuary, specifically to examine how the lateral geometry affects the strength and mechanisms of exchange flow. We find that the exchange flow is exclusively confined to the channel region during spring tides, when stratification is weak, and it broadens laterally over the shoals during the more stratified neap tides but still occupies a small fraction of the total width of the estuary. Exchange flow is relatively weak during spring tides, resulting from oscillatory shear dispersion in the channel augmented by weak Eulerian exchange flow. During neap tides, stratification and shear increase markedly, resulting in a strong Eulerian residual shear flow driven mainly by the along‐estuary density gradient, with a net exchange flow roughly 5 times that of the spring tide. During both spring and neap tides, lateral salinity gradients generated by differential advection at the edge of the channel drive a tidally oscillating cross‐channel flow, which strongly influences the stratification, along‐estuary salt balance, and momentum balance. The lateral flow also causes the phase variation in salinity that results in oscillatory shear dispersion and is an advective momentum source contributing to the residual circulation. Whereas the shoals make a negligible direct contribution to the exchange flow, they have an indirect influence due to the salinity gradients between the channel and the shoal. 
    more » « less
  2. Abstract A study of transport mechanisms in the oligohaline reach of the Delaware Estuary examines several locations with rapid changes in cross-sectional area that increase the horizontal salinity gradient, the exchange flow, and the upstream salt flux. This study is motivated by the proximity of municipal drinking water intakes upstream of the oligohaline range of the estuary, which can advance to just below the City of Philadelphia, PA, during low flow events. A Regional Ocean Model System (ROMS) numerical model was used to analyze the potential mechanisms of dispersion in the tidal Delaware River. While the model domain is largely within the tidal-fresh upper estuary, the domain below Philadelphia becomes oligohaline (0.5–5 psu) during low-flow events. Results found that landward transport of salt is facilitated by a combination of steady vertical shear dispersion and tidal oscillatory salt flux, with the latter becoming increasingly important approaching the upstream extent of salt intrusion. Frontogenesis is also an important intrusion mechanism in the vicinity of specific bathymetric features between km 110 and 114 near the Delaware Memorial Bridge and near km 126 near Marcus Hook. Moreover, the tidal advection of these fronts near km 117 produces strong lateral gradients that drive secondary flows and produce stronger tidal oscillatory salt flux away from the regions of frontogenesis. 
    more » « less
  3. Abstract In classic models of the tidally averaged gravitationally driven estuarine circulation, denser salty oceanic water moves up the estuary near the bottom, while less dense riverine water flows toward the ocean near the surface. Traditionally, it is assumed that the associated pressure gradient forces and salt advection are balanced by vertical mixing. This study, however, demonstrates that lateral (across the estuary width) transport processes are essential for maintaining the estuarine circulation. This is because for realistic estuarine bathymetry, the depth-integrated salt transport up the estuary is enhanced in the deeper estuary channel. A closed salt budget then requires the lateral transport of this excess salt in the deeper channel toward the estuarine flanks. To understand how such lateral transport affects the estuarine salt and momentum balances, we devise an idealized model with explicit lateral transport focusing on tidally averaged lateral mixing effects. Solutions for the along-estuary velocity and salinity are nondimensionalized to depend only on one single nondimensional parameter, referred to as the Fischer number, which describes the relative importance of lateral to vertical tidal mixing. For relatively strong lateral tidal mixing (greater Fischer number), salinity and velocity variations are predominantly vertical. For relatively weak lateral tidal mixing (smaller Fischer number), salinity and velocity variations are predominantly lateral. Overall, lateral transport greatly affects the estuarine circulation and controls the estuarine salinity intrusion length, which is demonstrated to scale inversely with the Fischer number. 
    more » « less
  4. Tide-surge interaction creates perturbations to storm surge at tidal frequencies and can affect the timing and magnitude of surge in tidally energetic regions. To date, limited research has identified high frequency tide-surge interaction (> 4 cycles per day) in coastal areas, and its significance in fluvial estuaries (where we consider it tide-surge-river interaction) is not well documented. Water level and current velocity observations were used to analyze tide-surge-river interaction at multiple tidal and overtide frequencies inside of a shallow estuary. Near the head of the estuary, higher frequency harmonics dominate tide-surge-river interaction and produce amplitudes more than double that of wind and pressure-driven surge. Bottom friction enhanced by storm-induced currents is the primary mechanism behind the interaction, which is further amplified by within-estuary resonance. High frequency tide-surge-river interactions in estuaries present a significant threat to human life, as the onset of flooding (in < 1.5 hrs.) is more rapid than coastal storm surge flooding. Commonly used storm surge forecasting models neglect high frequency tide-surge-river interaction and thus can markedly underestimate the magnitude and timing of inland storm surge flooding. 
    more » « less
  5. Tide and salinity data collected at minute intervals over multiple semidiurnal tides were used to investigate the source of water (e.g., seawater, river, groundwater and rain) and their relative timing in mixing at the mouth of a river, a tidal creek at mid-estuary and a tidal creek at the shoreline at the head of a tropical mangrove estuary. Our objectives were to document the temporal changes in tide induced water level changes and salinity at each location and to use the relationship between salinity and water level to elucidate the sources of water and the timing of different sources of water in the hydrologic mixing processes. The data trends in tide vs. salinity (T-S) plots for the river mouth revealed mixing with seawater during rising tides and freshwater diluted seawater (brackish) drainage from the mangrove forest during ebb tides. In the mangrove creek at mid-estuary, the data trends in the T-S plots for rising tides initially showed constant salinity, followed by sharp rises in salinity to peak tide caused by seawater intrusion. The salinity decreased precipitously at the start of tidal ebbing due to influx of freshwater (rain) diluted brackish water from the mangrove forest. The data trends in the T-S plots for the tidal creek at the shoreline located at the estuary head showed constant salinity which decreased only near peak rising tide because of river dilution. During tidal ebbing, the salinity further decreased from groundwater influx before increasing to background salinity, which stayed constant to low tide. Establishing T-S patterns for multiple locations in mangrove estuaries over sub-tidal to tidal scales define the expected salinity variations in seawater-freshwater mixing which can be used to (1) establish baseline hydrologic and salinity (hydrochemical) conditions for temporal and spatial assessments and (2) serve to guide short to long-term sampling regimes for scientific studies and estuarine ecosystem management. 
    more » « less