skip to main content


Title: Two-Dimensional Wavenumber Spectra on the Horizontal Submesoscale and Vertical Finescale
Abstract Horizontal and vertical wavenumbers ( k x , k z ) immediately below the Ozmidov wavenumber ( N 3 / ε ) 1/2 are spectrally distinct from both isotropic turbulence ( k x , k z > 1 cpm) and internal waves as described by the Garrett–Munk (GM) model spectrum ( k z < 0.1 cpm). A towed CTD chain, augmented with concurrent Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling float microstructure measurements and shipboard ADCP surveys, are used to characterize 2D wavenumber ( k x , k z ) spectra of isopycnal slope, vertical strain, and isopycnal salinity gradient on horizontal wavelengths from 50 m to 250 km and vertical wavelengths of 2–48 m. For k z < 0.1 cpm, 2D spectra of isopycnal slope and vertical strain resemble GM. Integrated over the other wavenumber, the isopycnal slope 1D k x spectrum exhibits a roughly +1/3 slope for k x > 3 × 10 −3 cpm, and the vertical strain 1D k z spectrum a −1 slope for k z > 0.1 cpm, consistent with previous 1D measurements, numerical simulations, and anisotropic stratified turbulence theory. Isopycnal salinity gradient 1D k x spectra have a +1 slope for k x > 2 × 10 −3 cpm, consistent with nonlocal stirring. Turbulent diapycnal diffusivities inferred in the (i) internal wave subrange using a vertical strain-based finescale parameterization are consistent with those inferred from finescale horizonal wavenumber spectra of (ii) isopycnal slope and (iii) isopycnal salinity gradients using Batchelor model spectra. This suggests that horizontal submesoscale and vertical finescale subranges participate in bridging the forward cascade between weakly nonlinear internal waves and isotropic turbulence, as hypothesized by anisotropic turbulence theory.  more » « less
Award ID(s):
1734222
NSF-PAR ID:
10397341
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
52
Issue:
9
ISSN:
0022-3670
Page Range / eLocation ID:
2009 to 2028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Horizontal and vertical wavenumbers (kx, kz) immediately below the Ozmidov wavenumber (N3/ε)1/2 are spectrally distinct from both isotropic turbulence (kx, kz > 1 cpm) and internal waves as described by the Garrett–Munk (GM) model spectrum (kz < 0.1 cpm). A towed CTD chain, augmented with concurrent Electromagnetic Autonomous Profiling Explorer (EM-APEX) profiling float microstructure measurements and shipboard ADCP surveys, are used to characterize 2D wavenumber (kx, kz) spectra of isopycnal slope, vertical strain, and isopycnal salinity gradient on horizontal wavelengths from 50 m to 250 km and vertical wavelengths of 2–48 m. For kz < 0.1 cpm, 2D spectra of isopycnal slope and vertical strain resemble GM. Integrated over the other wavenumber, the isopycnal slope 1D kx spectrum exhibits a roughly +1/3 slope for kx > 3 × 10−3 cpm, and the vertical strain 1D kz spectrum a −1 slope for kz > 0.1 cpm, consistent with previous 1D measurements, numerical simulations, and anisotropic stratified turbulence theory. Isopycnal salinity gradient 1D kx spectra have a +1 slope for kx > 2 × 10−3 cpm, consistent with nonlocal stirring. Turbulent diapycnal diffusivities inferred in the (i) internal wave subrange using a vertical strain-based finescale parameterization are consistent with those inferred from finescale horizonal wavenumber spectra of (ii) isopycnal slope and (iii) isopycnal salinity gradients using Batchelor model spectra. This suggests that horizontal submesoscale and vertical finescale subranges participate in bridging the forward cascade between weakly nonlinear internal waves and isotropic turbulence, as hypothesized by anisotropic turbulence theory. 
    more » « less
  2. Abstract

    Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.

     
    more » « less
  3. Abstract Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s −1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean. Significance Statement Relative to upper-ocean measurements of temperature, salinity, and velocity, deep ocean measurements (below 2000 m) are fewer in number and more difficult to collect. Deep measurements are needed, however, to explore the nature of deep ocean circulation contributing to the global redistribution of heat and to determine how upper-ocean behavior impacts or drives deep motions. Understanding of geographic and temporal variability in vertical structures of currents and eddies enables improved description of energy pathways in the ocean driven by turbulent interactions. In this study, we use newly developed autonomous underwater vehicles, capable of diving to the seafloor and back on a near daily basis, to collect high-resolution full ocean depth measurements at various locations in the North Atlantic. These measurements reveal connections between surface and deep motions, and importantly show their time evolution. Results of analyzing these vertical structures reveal the deep ocean to regularly “feel” events in the upper ocean and permit new comparisons to deep motions in climate models. 
    more » « less
  4. Abstract We investigate the sensitivity of mesoscale atmospheric predictability to the slope of the background kinetic energy spectrum E by adding initial errors to simulations of idealized moist midlatitude cyclones at several wavenumbers k for which the slope of E (k) is significantly different. These different slopes arise from 1) differences in the E (k) generated by cyclones growing in two different moist baroclinically unstable environments, and 2) differences in the horizontal scale at which initial perturbations are added, with E (k) having steeper slopes at larger scales. When small-amplitude potential temperature perturbations are added, the error growth through the subsequent 36-h simulation is not sensitive to the slope of E (k) nor to the horizontal scale of the initial error. In all cases with small-amplitude perturbations, the error growth in physical space is dominated by moist convection along frontal boundaries. As such, the error field is localized in physical space and broad in wavenumber (spectral) space. In moist midlatitude cyclones, these broadly distributed errors in wavenumber space limit mesoscale predictability by growing up-amplitude rather than by cascading upscale to progressively longer wavelengths. In contrast, the error distribution in homogeneous turbulence is broad in physical space and localized in wavenumber space, and dimensional analysis can be used to estimate the error growth rate at a specific wavenumber k from E (k). Predictability estimates derived in this manner, and from the numerical solutions of idealized models of homogeneous turbulence, depend on whether the slope of E (k) is shallower or steeper than k^ −3 , which differs from the slope-insensitive behavior exhibited by moist midlatitude cyclones. 
    more » « less
  5. Microstructure measurements in Drake Passage and on the flanks of Kerguelen Plateau find turbulent dissipation rates ε on average factors of 2–3 smaller than linear lee-wave generation predictions, as well as a factor of 3 smaller than the predictions of a well-established parameterization based on finescale shear and strain. Here, the possibility that these discrepancies are a result of conservation of wave action E/ ωL= E/| kU| is explored. Conservation of wave action will transfer a fraction of the lee-wave radiation back to the mean flow if the waves encounter weakening currents U, where the intrinsic or Lagrangian frequency ωL= | kU| ↓ | f| and k the along-stream horizontal wavenumber, where kU ≡ k ⋅ V. The dissipative fraction of power that is lost to turbulence depends on the Doppler shift of the intrinsic frequency between generation and breaking, hence on the topographic height spectrum and bandwidth N/ f. The partition between dissipation and loss to the mean flow is quantified for typical topographic height spectral shapes and N/ f ratios found in the abyssal ocean under the assumption that blocking is local in wavenumber. Although some fraction of lee-wave generation is always dissipated in a rotating fluid, lee waves are not as large a sink for balanced energy or as large a source for turbulence as previously suggested. The dissipative fraction is 0.44–0.56 for topographic spectral slopes and buoyancy frequencies typical of the deep Southern Ocean, insensitive to flow speed U and topographic splitting. Lee waves are also an important mechanism for redistributing balanced energy within their generating bottom current.

     
    more » « less