Active galactic nucleus (AGN) feedback is postulated as a key mechanism for regulating star formation within galaxies. Studying the physical properties of the outflowing gas from AGNs is thus crucial for understanding the coevolution of galaxies and supermassive black holes. Here we report 55 pc resolution ALMA neutral atomic carbon [C
We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-
- PAR ID:
- 10397390
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 944
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L19
- Size(s):
- Article No. L19
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract i ]3P 1−3P 0observations toward the central 1 kpc of the nearby Type 2 Seyfert galaxy NGC 1068, supplemented by 55 pc resolution CO(J = 1−0) observations. We find that [Ci ] emission within the central kiloparsec is strongly enhanced by a factor of >5 compared to the typical [Ci ]/CO intensity ratio of ∼0.2 for nearby starburst galaxies (in units of brightness temperature). The most [Ci ]-enhanced gas (ratio > 1) exhibits a kiloparsec-scale elongated structure centered at the AGN that matches the known biconical ionized gas outflow entraining molecular gas in the disk. A truncated, decelerating bicone model explains well the kinematics of the elongated structure, indicating that the [Ci ] enhancement is predominantly driven by the interaction between the ISM in the disk and the highly inclined ionized gas outflow (which is likely driven by the radio jet). Our results strongly favor the “CO dissociation scenario” rather than the “in situ C formation” one, which prefers a perfect bicone geometry. We suggest that the high-[Ci ]/CO intensity ratio gas in NGC 1068 directly traces ISM in the disk that is currently dissociated and entrained by the jet and the outflow, i.e., the “negative” effect of the AGN feedback. -
Abstract We present maps tracing the fraction of dust in the form of polycyclic aromatic hydrocarbons (PAHs) in IC 5332, NGC 628, NGC 1365, and NGC 7496 from JWST/MIRI observations. We trace the PAH fraction by combining the F770W (7.7
μ m) and F1130W (11.3μ m) filters to track ionized and neutral PAH emission, respectively, and comparing the PAH emission to F2100W, which traces small, hot dust grains. We find the averageR PAH= (F770W + F1130W)/F2100W values of 3.3, 4.7, 5.1, and 3.6 in IC 5332, NGC 628, NGC 1365, and NGC 7496, respectively. We find that Hii regions traced by MUSE Hα show a systematically low PAH fraction. The PAH fraction remains relatively constant across other galactic environments, with slight variations. We use CO+Hi +Hα to trace the interstellar gas phase and find that the PAH fraction decreases above a value of in all four galaxies. Radial profiles also show a decreasing PAH fraction with increasing radius, correlated with lower metallicity, in line with previous results showing a strong metallicity dependence to the PAH fraction. Our results suggest that the process of PAH destruction in ionized gas operates similarly across the four targets. -
Abstract We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1–0) and CO (2–1) intensity,
I CO, and mid-IR intensity,I MIR, at 8, 12, 22, and 24μ m. TheI COversusI MIRrelationship is reasonably described by a power law with slopes 0.7–1.2 and normalizationI CO∼ 1 K km s−1atI MIR∼ 1 MJy sr−1. Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1–0) and CO (2–1) allow us to infer that , in good agreement with other work. The 8μ m and 12μ m bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24μ m, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass (M ⋆) and anticorrelates with star formation rate/M ⋆. At ∼1 kpc resolution, the first four PHANGS–JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities. -
Abstract We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H22.12
μ m) to optical ionized gas ([Oiii ], [Nii ], [Sii ], and [Oi ]) and hot plasma (FeXXV ). In the most distinct bubble, we see a clear shock front traced by high [Oiii ]/Hβ and [Oiii ]/[Oi ]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, where the two galaxies’ interstellar media are colliding. A ridgeline of high [Oiii ]/Hβ emission along the eastern arm aligns with the southern nucleus’ stellar disk minor axis; optical integral field spectroscopy from WiFeS suggests this highly ionized gas is centered at systemic velocity and likely photoionized by direct line of sight to the southern active galactic nucleus. -
Abstract We report a Karl G. Jansky Very Large Array search for redshifted CO(1–0) emission from three H
i -absorption-selected galaxies atz ≈ 2, identified earlier in their CO(3–2) or CO(4–3) emission. We detect CO(1–0) emission from DLA B1228-113 atz ≈ 2.1933 and DLA J0918+1636 atz ≈ 2.5848; these are the first detections of CO(1–0) emission in high-z Hi -selected galaxies. We obtain high molecular gas masses,M mol≈ 1011× (α CO/4.36)M ⊙, for the two objects with CO(1–0) detections, which are a factor of ≈1.5–2 lower than earlier estimates. We determine the excitation of the mid-J CO rotational levels relative to theJ = 1 level,r J 1, in Hi -selected galaxies for the first time, obtainingr 31= 1.00 ± 0.20 andr 41= 1.03 ± 0.23 for DLA J0918+1636, andr 31= 0.86 ± 0.21 for DLA B1228-113. These values are consistent with thermal excitation of theJ = 3 andJ = 4 levels. The excitation of theJ = 3 level in the Hi -selected galaxies is similar to that seen in massive main-sequence and submillimeter galaxies atz ≳2, but higher than that in main-sequence galaxies atz ≈ 1.5; the higher excitation of the galaxies atz ≳ 2 is likely to be due to their higher star formation rate (SFR) surface density. We use Hubble Space Telescope Wide Field Camera 3 imaging to detect the rest-frame near-ultraviolet (NUV) emission of DLA B1228-113, obtaining an NUV SFR of 4.44 ± 0.47M ⊙yr−1, significantly lower than that obtained from the total infrared luminosity, indicating significant dust extinction in thez ≈ 2.1933 galaxy.