skip to main content


Title: Xanthene‐Based Nitric Oxide‐Responsive Nanosensor for Photoacoustic Imaging in the SWIR Window
Abstract

Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near‐infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR‐1), thienothiophene (SCR‐2), or bithiophene (SCR‐3). We leverage the fact thatSCR‐1undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP‐NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug‐induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.

 
more » « less
Award ID(s):
1757220 1700982
PAR ID:
10397601
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
13
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near‐infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR‐1), thienothiophene (SCR‐2), or bithiophene (SCR‐3). We leverage the fact thatSCR‐1undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP‐NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug‐induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.

     
    more » « less
  2. Abstract

    Bright fluorophores in the near‐infrared and shortwave infrared (SWIR) regions of the electromagnetic spectrum are essential for optical imaging in vivo. In this work, we utilized a 7‐dimethylamino flavylium heterocycle to construct a panel of novel red‐shifted polymethine dyes, with emission wavelengths from 680 to 1045 nm. Photophysical characterization revealed that the 1‐ and 3‐methine dyes display enhanced photostability and the 5‐ and 7‐methine dyes exhibit exceptional brightness for their respective spectral regions. A micelle formulation of the 7‐methine facilitated SWIR imaging in mice. This report presents the first polymethine dye designed and synthesized for SWIR in vivo imaging.

     
    more » « less
  3. Shortwave infrared (SWIR) emission has great potential for deep-tissue in vivo biological imaging with high resolution. In this article, the synthesis and characterization of two new xanthene-based RosIndolizine dyes coded Ph RosIndz and tol RosIndz is presented. The dyes are characterized via femtosecond transient absorption spectroscopy as well as steady-state absorption and emission spectroscopies. The emission of these dyes is shown in the SWIR region with peak emission at 1097 nm. Tol RosIndz was encapsulated with an amphiphilic linear dendritic block co-polymer (LDBC) coded 10-PhPCL-G3 with high uptake yield. Further, cellular toxicity was examined in vitro using HEK (human embryonic kidney) cells where a >90% cell viability was observed at practical concentrations of the encapsulated dye which indicates low toxicity and reasonable biocompatibility. 
    more » « less
  4. Abstract Shortwave infrared radiation (SWIR) is the portion of the electromagnetic spectrum from approximately 900 nm to 2500 nm. Recent advances in imaging systems have expanded the application of SWIR emitters from traditional fields in materials science to biomedical imaging, and the new detectors in SWIR opened an opportunity of deep tissue imaging. Achieving deep photon penetration while maintaining high resolution is one of the main objectives and challenges in bioimaging used for the investigation of diverse processes in living organisms. The application of SWIR emitters in biological settings is, however, hampered by low quantum efficiency. So far, photoluminescent properties in the SWIR region have not been improved by extending concepts that have been developed for the visible (400–650 nm) and near-infrared (NIR, 700–900 nm) wavelengths, which indicates that the governing behavior is fundamentally different in the SWIR. The focus of this minireview is to examine the mechanisms behind the low efficiency of SWIR emitters as well as to highlight the progress in their design for biological applications. Several common mechanisms will be considered in this review: (a) the effect of the energy gap between the excited and ground state on the quantum efficiency, (b) the coupling of the excited electronic states in SWIR emitters to vibrational states in the surrounding matrix, and (c) the role of environment in quenching the excited states. General strategies to improve the quantum yields for a diverse type of SWIR emitters will be also presented. 
    more » « less
  5. Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700–1000 nm) and shortwave infrared (SWIR, 1000–1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR. 
    more » « less