skip to main content


Title: Comparing process-based models with the inventory approach to predict CH 4 emission of livestock enteric fermentation
Abstract

Livestock production is the largest anthropogenic methane (CH4) source globally over the decades. Enteric fermentation of ruminants is responsible for the majority of global livestock CH4emissions. Both inventory-based models (IvtMs) and process-based models (PcMs) are extensively used to assess the livestock CH4emission dynamics. However, the model performance and the associated uncertainty have not been well quantified and understood, which greatly hamper our credibility of the regional and global CH4emission predictions. In this study, we compared the CH4emissions of livestock enteric fermentation (CH4,ef) predicted by multiple IvtMs and PcMs across Inner Mongolia, a region dominated by typical temperate grasslands that are widely used for animal husbandry. Twenty predictions from five IvtMs, and ten predations from five PcMs were explicitly calculated and compared for the reference year of 2006. The CH4,efpredicted from PcMs is lower than IvtMs and the variation between PcMs is substantially higher, i.e. 0.34 ± 0.36 g CH4/m2yr and 0.78 ± 0.14 g CH4/m2yr for PcMs and IvtMs, respectively. Different model strategies undertaken, i.e. the demand-oriented strategy for IvtMs and the resource-demand co-determined one for PcMs, cause the different predictions of CH4,efbetween the two model groups. Using the results from IvtMs as the baseline scalar, we identified and benchmarked the performance of individual PcMs in the study region. The quantitative information provided can facilitate the understanding of key principles and processes of CH4,efestimations, which will contribute to the future model development of global CH4emission.

 
more » « less
NSF-PAR ID:
10397633
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
3
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 035002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, we deployed an Eddy covariance (EC) system in a small reservoir located in southwestern Virginia, USA over 2 years to measure carbon dioxide (CO2) and methane (CH4) fluxes near‐continuously. Fluxes were coupled with in situ sensors measuring multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2(633–731 g CO2‐C m−2 yr−1) and CH4(1.02–1.29 g CH4‐C m−2 yr−1) to the atmosphere, with substantial sub‐daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater during the summer thermally stratified season as compared to the winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice‐on conditions as compared to continuous ice‐on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice‐cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved organic matter. Overall, our novel year‐round EC data from a small reservoir indicate that these freshwater ecosystems likely contribute a substantial amount of CO2and CH4to global GHG budgets, relative to their surface area.

     
    more » « less
  2. Abstract

    Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4emissions with process-based modeling estimates of land CO2, N2O and CH4fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2sink. We also found large grassland-specific variations in net GHG fluxes, withpasturelandsacting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1(mean ± 1.0 s.d.) andrangelandsa strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.

     
    more » « less
  3. Abstract

    In this study, we present seasonal atmospheric measurements of δ13CCH4from dairy farms in the San Joaquin Valley of California. We used δ13CCH4to characterize emissions from enteric fermentation by measuring downwind of cattle housing (e.g., freestall barns, corrals) and from manure management areas (e.g., anaerobic manure lagoons) with a mobile platform equipped with cavity ring‐down spectrometers. Across seasons, the δ13CCH4from enteric fermentation source areas ranged from −69.7 ± 0.6 per mil (‰) to −51.6 ± 0.1‰ while the δ13CCH4from manure lagoons ranged from −49.5 ± 0.1‰ to −40.5 ± 0.2‰. Measurements of δ13CCH4of enteric CH4suggest a greater than 10‰ difference between cattle production groups in accordance with diet. Isotopic signatures of CH4were used to characterize enteric and manure CH4from downwind plume sampling of dairies. Our findings show that δ13CCH4measurements could improve the attribution of CH4emissions from dairy sources at scales ranging from individual facilities to regions and help constrain the relative contributions from these different sources of emissions to the CH4budget.

     
    more » « less
  4. Abstract

    Ammonia (NH3) emissions from fertilizer application is a highly uncertain input to chemical transport models (CTMs). Reducing such uncertainty is important for improving predictions of ambient NH3and PM2.5concentrations, for regulatory and policy purposes and for exploring linkages of air pollution to human health and ecosystem services. Here, we implement a spatially and temporally resolved inventory of NH3emissions from fertilizers, based on high-resolution crop maps, crop nitrogen demand and a process model, as input to the Comprehensive Air Quality Model with Extensions (CAMx). We also examine sensitivity to grid resolution, by developing inputs at 12 km × 12 km and 4 km × 4 km, for the Corn Belt region in the Midwest United States, where NH3emissions from chemical fertilizer application contributes to approximately 50% of anthropogenic emissions. Resulting predictions of ambient NH3and PM2.5concentrations were compared to predictions developed using the baseline 2011 National Emissions Inventory, and evaluated for closure with ground observations for May 2011. While CAMx consistently underpredicted NH3concentrations for all scenarios, the new emissions inventory reduced bias in ambient NH3concentration by 33% at 4 km × 4 km, and modestly improved predictions of PM2.5, at 12 km × 12 km (correlation coefficients r = 0.57 for PM2.5, 0.88 for PM-NH4, 0.71 for PM-SO4, 0.52 for PM-NO3). Our findings indicate that in spite of controlling for total magnitude of emissions and for meteorology, representation of NH3emissions and choice of grid resolution within CAMx impacts the total magnitude and spatial patterns of predicted ambient NH3and PM2.5concentrations. This further underlines the need for improvements in NH3emission inventories. For future research, our results also point to the need for better understanding of the effect of model spatial resolution with regard to both meteorology and chemistry in CTMs, as grid size becomes finer.

     
    more » « less
  5. Abstract

    Inland waters play a major role in global greenhouse gas (GHG) budgets. The smallest of these systems (i.e., ponds) have a particularly large—but poorly constrained—emissions footprint at the global scale. Much of this uncertainty is due to a poor understanding of temporal variability in emissions. Here, we conducted high‐resolution temporal sampling to quantify GHG exchange between four temperate constructed ponds and the atmosphere on an annual basis. We show these ponds are a net source of GHGs to the atmosphere (564.4 g CO2‐eq m−2 yr−1), driven by highly temporally variable diffusive methane (CH4) emissions. Diffusive CH4release to the atmosphere was twice as high during periods when the ponds had a stratified water column than when it was mixed. Ebullitive CH4release was also higher during stratification. Building ponds to favor mixed conditions thus presents an opportunity to minimize the global GHG footprint of future pond construction.

     
    more » « less