- Award ID(s):
- 2040095
- PAR ID:
- 10397719
- Date Published:
- Journal Name:
- Annual Conference, American Society for Engineering Education, Minneapolis, Minnesota, June 26-29, 2022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In the College of Engineering, Design and Computing at the University of Colorado Denver, a faculty learning community (FLC) is exploring how to apply known pedagogical practices intended to foster equity and inclusion. Faculty come from all five departments of the college. For this three-year NSF-funded project, Year 1 was dedicated to deepening reflection as individuals and building trust as a cohort. Now, in Year 2, the FLC is focused on translating pedagogical practices from literature and other resources into particular courses. This cohort has experienced some adjustments as some faculty leave the FLC and new faculty choose to join the FLC. Since this cohort continues to grow, this paper presents key features that have supported the FLC’s formation and then transition to Year 2, as well as the design and implementation of a new faculty orientation, called the Welcome Academy, specific to new engineering faculty and practices related to diversity, equity, and inclusion. Finally, drawing on the principal investigator (PI) team’s reflections as well as feedback from external evaluators, we provide our insights with the intention of sharing useful experiences to other colleges planning to form such FLCs.more » « less
-
There is substantial opportunity for engineering graduates to enter the workforce to engage in a fulfilling career and achieve social mobility, but there is a lack of adequate support for low income, academically talented students. The purpose of this poster is to describe the interventions designed to support S-STEM scholarship students at [blinded for review] University in the first year of our S-STEM project. Our S-STEM project objectives are threefold: 1) Provide scholarships to encourage talented students with low incomes and demonstrated financial need to initiate and graduate from engineering majors in the College of Engineering at [blinded] University and subsequently enter the engineering workforce or a graduate program; 2) Develop a support system that integrates multiple elements and services to foster a learning environment that motivates scholarship students to persist in their engineering studies; and 3) Foster an inclusive learning environment by engaging all engineering students in diversity, equity, and inclusion experiences and nurturing an equity mindset in student leaders through participation in training programs. To accomplish these goals, we identified 10 low-income, academically talented students to receive scholarships. We also identified 80 additional engineering students who wished to participate in the Engineering Living/Learning Community (ELC). The scholarships students and other interested students were placed in the ELC starting in Fall 2023, where they are experiencing first year engineering as a cohort. This cohort experience includes required seminars, required attendance of Engineering I and Calculus I in a designated section, and the option of living in a shared dorm to facilitate further collaboration. Seminars that are part of the ELC are focused on adjusting to college life (e.g., time management, course registration, resume design) and diversity, equity, and inclusion subjects, including upstander training and coping with imposter syndrome. Scholarship students are also being encouraged to engage in leadership training offered through the University. This leadership training also focuses on DEI topics, and encourages students to be informed advocates. Finally, this project is assessed by an external evaluator to determine the project’s impact on students’ motivation, sense of belonging, and their equity mindset. Evaluation data involve pre- and post-surveys of all first-year engineering students, and focus groups of project leaders, ELC mentors, scholarship students, and other engineering students.more » « less
-
It is important for future engineers to understand themselves in relation to the many cultural influences they may encounter during their career, and to confront their own biases when interacting with colleagues whose cultural backgrounds are different from their own. This paper describes and evaluates a series of nine diversity, equity, and inclusion (DEI) workshops developed and implemented during the summer of 2022 for high school and entering first-year college students enrolled in the Research, Academics, and Mentoring Pathways (RAMP) six week engineering summer bridge program at University of Massachusetts Lowell. The workshops incorporated activities designed to create an environment fostering respect, belonging, and acceptance to make teamwork more inclusive and effective. Each workshop was based on collaborative learning and used a broad range of strategies to engage students as active participants in learning about diversity, equity, and inclusion within the context of teamwork. To develop the workshops, the facilitators aligned the activities with key themes from chapters in the book From Athletics to Engineering: 8 Ways to Support Diversity, Equity, and Inclusion for All [1]. The summer bridge program was evaluated using quantitative and qualitative data collected throughout the program and upon its conclusion tracking students’ reactions and levels of engagement in each of the program components. This included a pre-survey, mid-semester survey, post-survey, and weekly journal prompts on Google Classroom. We also used the Universality-Diversity scale [2] to measure any pre-post changes in students’ attitudes towards diversity. With regard to the workshops, an analysis of student responses indicated a high level of satisfaction and sense of accomplishment. Students reported they enjoyed getting to know each other better and that the DEI activities were interactive, educational, and engaging.more » « less
-
It is important for future engineers to understand themselves in relation to the many cultural influences they may encounter during their career, and to confront their own biases when interacting with colleagues whose cultural backgrounds are different from their own. This paper describes and evaluates a series of nine diversity, equity, and inclusion (DEI) workshops developed and implemented during the summer of 2022 for high school and entering first-year college students enrolled in the Research, Academics, and Mentoring Pathways (RAMP) sixweek engineering summer bridge program at University of Massachusetts Lowell. The workshops incorporated activities designed to create an environment fostering respect, belonging, and acceptance to make teamwork more inclusive and effective. Each workshop was based on collaborative learning and used a broad range of strategies to engage students as active participants in learning about diversity, equity, and inclusion within the context of teamwork. To develop the workshops, the facilitators aligned the activities with key themes from chapters in the book From Athletics to Engineering: 8 Ways to Support Diversity, Equity, and Inclusion for All [1]. The summer bridge program was evaluated using quantitative and qualitative data collected throughout the program and upon its conclusion tracking students’ reactions and levels of engagement in each of the program components. This included a pre-survey, mid-semester survey, post-survey, and weekly journal prompts on Google Classroom. We also used the Universality-Diversity scale [2] to measure any pre-post changes in students’ attitudes towards diversity. With regard to the workshops, an analysis of student responses indicated a high level of satisfaction and sense of accomplishment. Students reported they enjoyed getting to know each other better and that the DEI activities were interactive, educational, and engaging.more » « less
-
This study provides a deeper understanding of the challenges facing community college transfer students in engineering and their faculty advisors at a 4-year research university. Using a phenomenological approach, data was analyzed from interviews with nine engineering transfers and seven faculty advisors. The findings unveiled nuanced barriers faced by engineering transfers and their faculty advisors, including transfers’ academic unpreparedness and struggles with nonacademic responsibilities; advisors’ heavy workload, disconnection with other student services, and lack of communication with community college advisors; and restrictions on course selection and program requirements in 4-year engineering programs. The findings provide meaningful insights into developing new policies and practices to improve the academic advising experience for engineering transfers.