skip to main content


Title: Bayesian Regression Tree Ensembles that Adapt to Smoothness and Sparsity
Summary

Ensembles of decision trees are a useful tool for obtaining flexible estimates of regression functions. Examples of these methods include gradient-boosted decision trees, random forests and Bayesian classification and regression trees. Two potential shortcomings of tree ensembles are their lack of smoothness and their vulnerability to the curse of dimensionality. We show that these issues can be overcome by instead considering sparsity inducing soft decision trees in which the decisions are treated as probabilistic. We implement this in the context of the Bayesian additive regression trees framework and illustrate its promising performance through testing on benchmark data sets. We provide strong theoretical support for our methodology by showing that the posterior distribution concentrates at the minimax rate (up to a logarithmic factor) for sparse functions and functions with additive structures in the high dimensional regime where the dimensionality of the covariate space is allowed to grow nearly exponentially in the sample size. Our method also adapts to the unknown smoothness and sparsity levels, and can be implemented by making minimal modifications to existing Bayesian additive regression tree algorithms.

 
more » « less
Award ID(s):
1712870 1907316
NSF-PAR ID:
10397803
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
80
Issue:
5
ISSN:
1369-7412
Page Range / eLocation ID:
p. 1087-1110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nonparametric regression on complex domains has been a challenging task as most existing methods, such as ensemble models based on binary decision trees, are not designed to account for intrinsic geometries and domain boundaries. This article proposes a Bayesian additive regression spanning trees (BAST) model for nonparametric regression on manifolds, with an emphasis on complex constrained domains or irregularly shaped spaces embedded in Euclidean spaces. Our model is built upon a random spanning tree manifold partition model as each weak learner, which is capable of capturing any irregularly shaped spatially contiguous partitions while respecting intrinsic geometries and domain boundary constraints. Utilizing many nice properties of spanning tree structures, we design an efficient Bayesian inference algorithm. Equipped with a soft prediction scheme, BAST is demonstrated to significantly outperform other competing methods in simulation experiments and in an application to the chlorophyll data in Aral Sea, due to its strong local adaptivity to different levels of smoothness. 
    more » « less
  2. Abstract

    Electrochemistry of surface‐bound molecules is of high importance for numerous electronic and sensor applications. Extracting the electron transfer rate is beneficial for understanding surface‐bound processes, but it requires experimental or computational rigor. We evaluate methods to determine electron transfer rates from large voltammetry sets from experiments via machine learning using decision tree ensembles, neural networks, and gaussian process regression models. We applied these to reproduce computational measures of electron transfer rates modeled by first principles. The best machine learning models were a random forest with 80 decision trees and a neural network with Bayesian regularization, producing root mean squared errors of 0.37 and 0.49 s−1, respectively, corresponding to mean percent errors of 0.38 % and 0.52 %, respectively. This work establishes machine learning methods for rapidly acquiring electron transfer rates across large datasets for widespread applications.

     
    more » « less
  3. We consider the problem of nonparametric regression in the high-dimensional setting in which P≫N. We study the use of overlapping group structures to improve prediction and variable selection. These structures arise commonly when analyzing DNA microarray data, where genes can naturally be grouped according to genetic pathways. We incorporate overlapping group structure into a Bayesian additive regression trees model using a prior constructed so that, if a variable from some group is used to construct a split, this increases the probability that subsequent splits will use predictors from the same group. We refer to our model as an overlapping group Bayesian additive regression trees (OG-BART) model, and our prior on the splits an overlapping group Dirichlet (OG-Dirichlet) prior. Like the sparse group lasso, our prior encourages sparsity both within and between groups. We study the correlation structure of the prior, illustrate the proposed methodology on simulated data, and apply the methodology to gene expression data to learn which genetic pathways are predictive of breast cancer tumor metastasis. 
    more » « less
  4. Graphs have been commonly used to represent complex data structures. In models dealing with graph-structured data, multivariate parameters may not only exhibit sparse patterns but have structured sparsity and smoothness in the sense that both zero and non-zero parameters tend to cluster together. We propose a new prior for high-dimensional parameters with graphical relations, referred to as the Tree-based Low-rank Horseshoe (T-LoHo) model, that generalizes the popular univariate Bayesian horseshoe shrinkage prior to the multivariate setting to detect structured sparsity and smoothness simultaneously. The T-LoHo prior can be embedded in many high-dimensional hierarchical models. To illustrate its utility, we apply it to regularize a Bayesian high-dimensional regression problem where the regression coefficients are linked by a graph, so that the resulting clusters have flexible shapes and satisfy the cluster contiguity constraint with respect to the graph. We design an efficient Markov chain Monte Carlo algorithm that delivers full Bayesian inference with uncertainty measures for model parameters such as the number of clusters. We offer theoretical investigations of the clustering effects and posterior concentration results. Finally, we illustrate the performance of the model with simulation studies and a real data application for anomaly detection on a road network. The results indicate substantial improvements over other competing methods such as the sparse fused lasso. 
    more » « less
  5. Decision trees are important both as interpretable models amenable to high-stakes decision making, and as building blocks of ensemble methods such as random forests and gradient boosting. Their statistical properties, however, are not well understood. The most cited prior works have focused on deriving pointwise consistency guarantees for CART in a classical nonparametric regression setting. We take a different approach, and advocate studying the generalization performance of decision trees with respect to different generative regression models. This allows us to elicit their inductive bias, that is, the assumptions the algorithms make (or do not make) to generalize to new data, thereby guiding practitioners on when and how to apply these methods. In this paper, we focus on sparse additive generative models, which have both low statistical complexity and some nonparametric flexibility. We prove a sharp squared error generalization lower bound for a large class of decision tree algorithms fitted to sparse additive models with C component functions. This bound is surprisingly much worse than the minimax rate for estimating such sparse additive models. The inefficiency is due not to greediness, but to the loss in power for detecting global structure when we average responses solely over each leaf, an observation that suggests opportunities to improve tree-based algorithms, for example, by hierarchical shrinkage. To prove these bounds, we develop new technical machinery, establishing a novel connection between decision tree estimation and rate-distortion theory, a sub-field of information theory. 
    more » « less