skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical and Experimental Investigation of Active and Passive Spreading for Groundwater Remediation
During in situ remediation of contaminated groundwater, a chemical or biological amendment is introduced into a contaminant plume to react with and degrade the contaminant. Since the degradation reactions only occur where the amendment and the contaminant are sufficiently close, the success of in situ remediation is controlled by the degree to which the amendment spreads into the contaminant plume. Spreading is defined as the reconfiguration of the plume geometry, which occurs as a result of spatially and temporally varying flow fields. Spreading can occur passively due to spatially varying velocity caused by aquifer heterogeneity. Spreading can also occur actively by inducing spatially and temporally varying flow fields through injections and extractions of clean water in wells surrounding the contaminated site. We used coupled numerical investigations and laboratory experiments to explore the effects of active spreading and passive spreading on contaminant degradation. We report here on the effects of passive spreading on contaminant degradation. We analyze the features of the flow field and plume geometry that encourage spreading contaminant degradation, so that the results from the numerical investigation and experiments can be used to design active spreading pumping sequences for other aquifers with other heterogeneity patterns.  more » « less
Award ID(s):
1417017
PAR ID:
10397856
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2020 World Environmental and Water Resources Congress
Page Range / eLocation ID:
97 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During in-situ remediation of contaminated groundwater, a chemical or biological amendment is introduced into the contaminant plume to react with the contaminant. Reactions occur only where the amendment and contaminant are in contact with each other, so active spreading has been proposed to increase the contact area between the two reactants. With active spreading, wells are installed in the vicinity of the contaminant plume and are operated in a pre-defined sequence of injections and extractions to create a spatio-temporally varying flow field that changes the shapes of the reactant plumes, generally leading to an increase in contact area and therefore an increase in reaction. The design of the active spreading system depends on the reaction chemistry of the contaminant. This study considers active spreading scenarios for contaminants with three different types of reactions: (1) non-sorbing aqueous contaminant, A, that degrades irreversibly to a benign chemical, C, through reaction with a non-sorbing aqueous amendment, B; (2) sorbing contaminant, A, the degrades irreversibly to a benign chemical, C, through reaction with a non-sorbing aqueous amendment, B, where sorption of A is independent of the concentration of B; and (3) contaminant, A, that exhibits reversible equilibrium surface complexation with concentrations in the mobile and immobile phases dependent on the concentration of the amendment, B. We compare the active spreading strategies for these three types of reactions and identify the characteristics each strategy that lead to enhanced removal of groundwater contaminants. 
    more » « less
  2. This paper reviews an ongoing research program of numerical and laboratory studies on chaotic advection applied to groundwater remediation, including numerically simulated effects of sorption and heterogeneity, and experiments aimed at demonstrating chaotic advection in refractive index matched (i.e., transparent) porous media. Additionally, this paper outlines a proposed approach to test chaotic advection at an appropriate field site. If shown to be successful in a field application, chaotic advection offers the possibility of better hydraulic control of contaminant plumes, accelerated remediation, consequent reduction in cost, and improvement in environmental health. 
    more » « less
  3. Abstract Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity of putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such asRalstonia,Cupriavidus,Azoarcus, andRhodococcusbecame more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations. 
    more » « less
  4. null (Ed.)
    Phononic crystals have the ability to manipulate the propagation of elastic waves in solids by generating unique dispersion characteristics. They can modify the conventional behavior of wave spreading in isotropic materials, known as attenuation, which negatively influences the ability of acoustic emission method to detect active defects in long-range, pipe-like structures. In this study, pipe geometry is reconfigured by adding gradient-index (GRIN) phononic crystal lens to improve the propagation distance of waves released by active defects such as crack growth and leak. The sensing element is designed to form a ring around the pipe circumference to capture the plane wave with the improved amplitude. The GRIN lens is designed by a special gradient-index profile with varying height stubs adhesively bonded to the pipe surface. The performance of GRIN lens for improving the amplitude of localized sources is demonstrated with finite element numerical model using multiphysics software. Experiments are conducted using pencil lead break simulating crack growth, as well as an orifice with pressured pipe simulating leak. The amplitude of the burst-type signal approximately doubles on average, validating the numerical findings. Hence, the axial distance between sensors can be increased proportionally in the passive sensing of defects in pipe-like geometries. 
    more » « less
  5. Solute transport and biogeochemical reactions in porous and fractured media flows are controlled by mixing, as are subsurface engineering operations such as contaminant remediation, geothermal energy production, and carbon sequestration. Porous media flows are generally regarded as slow, so the effects of fluid inertia on mixing and reaction are typically ignored. Here, we demonstrate through microfluidic experiments and numerical simulations of mixing-induced reaction that inertial recirculating flows readily emerge in laminar porous media flows and dramatically alter mixing and reaction dynamics. An optimal Reynolds number that maximizes the reaction rate is observed for individual pore throats of different sizes. This reaction maximization is attributed to the effects of recirculation flows on reactant availability, mixing, and reaction completion, which depend on the topology of recirculation relative to the boundary of the reactants or mixing interface. Recirculation enhances mixing and reactant availability, but a further increase in flow velocity reduces the residence time in recirculation, leading to a decrease in reaction rate. The reaction maximization is also confirmed in a flow channel with grain inclusions and randomized porous media. Interestingly, the domain-wide reaction rate shows a dramatic increase with increasing Re in the randomized porous media case. This is because fluid inertia induces complex three-dimensional flows in randomized porous media, which significantly increases transverse spreading and mixing. This study shows how inertial flows control reaction dynamics at the pore scale and beyond, thus having major implications for a wide range of environmental systems. 
    more » « less