- NSF-PAR ID:
- 10397912
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 13
- Issue:
- 43
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 12726 to 12737
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Anionic dopants, such as O-atom vacancies, alter the thermochemical and kinetic parameters of proton coupled electron transfer (PCET) at metal oxide surfaces; understanding their impact(s) is essential for informed material design for efficient energy conversion processes. To circumvent challenges associated with studying extended solids, we employ polyoxovanadate–alkoxide clusters as atomically precise models of reducible metal oxide surfaces. In this work, we examine net hydrogen atom (H-atom) uptake to an oxygen deficient vanadium oxide assembly, [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 . Addition of two H-atom equivalents to [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 results in formation of [V 6 O 5 (MeCN)(OH 2 )(OCH 3 ) 12 ] 0 . Assessment of the bond dissociation free energy of the O–H bonds of the resultant aquo moiety reveals that the presence of an O-atom defect weakens the O–H bond strength. Despite a decreased thermodynamic driving force for the reduction of [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 , kinetic investigations show the rate of H-atom uptake at the cluster surface is ∼100× faster than its oxidized congener, [V 6 O 7 (OCH 3 ) 12 ] 0 . Electron density derived from the O-atom vacancy is shown to play an important role in influencing H-atom uptake at the cluster surface, lowering activation barriers for H-atom transfer.more » « less
-
We report accelerated rates of oxygen-atom transfer from a polyoxovanadate–alkoxide cluster following functionalization with a 4- tert butylcalix[4]arene ligand. Incorporation of this electron withdrawing ligand modifies the electronics of the metal oxide core, favoring a mechanism in which the rate of oxygen-atom transfer is limited by outer-sphere electron transfer.more » « less
-
Biology employs exquisite control over proton, electron, H-atom, or H 2 transfer. Similar control in synthetic systems has the potential to facilitate efficient and selective catalysis. Here we report a dihydrazonopyrrole Ni complex where an H 2 equivalent can be stored on the ligand periphery without metal-based redox changes and can be leveraged for catalytic hydrogenations. Kinetic and computational analysis suggests ligand hydrogenation proceeds by H 2 association followed by H–H scission. This complex is an unusual example where a synthetic system can mimic biology's ability to mediate H 2 transfer via secondary coordination sphere-based processes.more » « less
-
The synthesis, structure, and reactivity of a series of cyclopentadienone and hydroxycyclopentadienyl 4,4’-dimethylbipyridine (dmbpy) iridium complexes (C5Tol2Ph2O)(dmbpy)IrCl 1, [(C5Tol2Ph2OH)(dmbpy)IrCl][OTf] 2 (C5Tol2Ph2O)(dmbpy)IrH 3, and [(C5Tol2Ph2OH)(dmbpy)IrH][OTf] 4 are described. The Ir(I) complexes 1 and 3 are active catalyst precursors for transfer hydrogenation of aldehydes, ketones, and N-heterocycles with HCO2H/Et3N under mild conditions. Model studies implicate the cationic iridium hydride, [(C5Tol2Ph2OH)(dmbpy)IrH][OTf] 4 as a key intermediate, as 4 reacts readily with acetone to generate isopropanol. Selectivity over hydrogenation of alkenes is enhanced compared to other Shvo-type catalysts, and only modest C=C hydrogenation observed when adjacent to polarizing functional groups. Catalytic hydrogenation likely proceeds by a metal-ligand bifunctional mechanism similar to related cyclopentadienone complexesmore » « less
-
Abstract The trichromium cluster (tbsL)Cr3(thf) ([tbsL]6−=[1,3,5‐C6H9(NC6H4‐
o ‐NSit BuMe2)3]6−) exhibits steric‐ and solvation‐controlled reactivity with organic azides to form three distinct products: reaction of (tbsL)Cr3(thf) with benzyl azide forms a symmetrized bridging imido complex (tbsL)Cr3(μ 3‐NBn); reaction with mesityl azide in benzene affords a terminally bound imido complex (tbsL)Cr3(μ 1‐NMes); whereas the reaction with mesityl azide in THF leads to terminal N‐atom excision from the azide to yield the nitride complex (tbsL)Cr3(μ 3‐N). The reactivity of this complex demonstrates the ability of the cluster‐templating ligand to produce a well‐defined polynuclear transition metal cluster that can access distinct single‐site and cooperative reactivity controlled by either substrate steric demands or reaction media.