skip to main content


Title: Coordination-induced bond weakening of water at the surface of an oxygen-deficient polyoxovanadate cluster
Hydrogen-atom (H-atom) transfer at the surface of heterogeneous metal oxides has received significant attention owing to its relevance in energy conversion and storage processes. Here, we present the synthesis and characterization of an organofunctionalized polyoxovanadate cluster, (calix)V6O5(OH2)(OMe) 8 (calix = 4- tert -butylcalix[4]arene). Through a series of equilibrium studies, we establish the BDFE(O–H) avg of the aquo ligand as 62.4 ± 0.2 kcal mol −1 , indicating substantial bond weaking of water upon coordination to the cluster surface. Subsequent kinetic isotope effect studies and Eyring analysis indicate the mechanism by which the hydrogenation of organic substrates occurs proceeds through a concerted proton–electron transfer from the aquo ligand. Atomistic resolution of surface reactivity presents a novel route of hydrogenation reactivity from metal oxide surfaces through H-atom transfer from surface-bound water molecules.  more » « less
Award ID(s):
2050793 2154727
NSF-PAR ID:
10397912
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
13
Issue:
43
ISSN:
2041-6520
Page Range / eLocation ID:
12726 to 12737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The trichromium cluster (tbsL)Cr3(thf) ([tbsL]6−=[1,3,5‐C6H9(NC6H4o‐NSitBuMe2)3]6−) exhibits steric‐ and solvation‐controlled reactivity with organic azides to form three distinct products: reaction of (tbsL)Cr3(thf) with benzyl azide forms a symmetrized bridging imido complex (tbsL)Cr3(μ3‐NBn); reaction with mesityl azide in benzene affords a terminally bound imido complex (tbsL)Cr3(μ1‐NMes); whereas the reaction with mesityl azide in THF leads to terminal N‐atom excision from the azide to yield the nitride complex (tbsL)Cr3(μ3‐N). The reactivity of this complex demonstrates the ability of the cluster‐templating ligand to produce a well‐defined polynuclear transition metal cluster that can access distinct single‐site and cooperative reactivity controlled by either substrate steric demands or reaction media.

     
    more » « less
  2. Abstract

    The trichromium cluster (tbsL)Cr3(thf) ([tbsL]6−=[1,3,5‐C6H9(NC6H4o‐NSitBuMe2)3]6−) exhibits steric‐ and solvation‐controlled reactivity with organic azides to form three distinct products: reaction of (tbsL)Cr3(thf) with benzyl azide forms a symmetrized bridging imido complex (tbsL)Cr3(μ3‐NBn); reaction with mesityl azide in benzene affords a terminally bound imido complex (tbsL)Cr3(μ1‐NMes); whereas the reaction with mesityl azide in THF leads to terminal N‐atom excision from the azide to yield the nitride complex (tbsL)Cr3(μ3‐N). The reactivity of this complex demonstrates the ability of the cluster‐templating ligand to produce a well‐defined polynuclear transition metal cluster that can access distinct single‐site and cooperative reactivity controlled by either substrate steric demands or reaction media.

     
    more » « less
  3. The synthesis, structure, and reactivity of a series of cyclopentadienone and hydroxycyclopentadienyl 4,4’-dimethylbipyridine (dmbpy) iridium complexes (C5Tol2Ph2O)(dmbpy)IrCl 1, [(C5Tol2Ph2OH)(dmbpy)IrCl][OTf] 2 (C5Tol2Ph2O)(dmbpy)IrH 3, and [(C5Tol2Ph2OH)(dmbpy)IrH][OTf] 4 are described. The Ir(I) complexes 1 and 3 are active catalyst precursors for transfer hydrogenation of aldehydes, ketones, and N-heterocycles with HCO2H/Et3N under mild conditions. Model studies implicate the cationic iridium hydride, [(C5Tol2Ph2OH)(dmbpy)IrH][OTf] 4 as a key intermediate, as 4 reacts readily with acetone to generate isopropanol. Selectivity over hydrogenation of alkenes is enhanced compared to other Shvo-type catalysts, and only modest C=C hydrogenation observed when adjacent to polarizing functional groups. Catalytic hydrogenation likely proceeds by a metal-ligand bifunctional mechanism similar to related cyclopentadienone complexes 
    more » « less
  4. Biology employs exquisite control over proton, electron, H-atom, or H 2 transfer. Similar control in synthetic systems has the potential to facilitate efficient and selective catalysis. Here we report a dihydrazonopyrrole Ni complex where an H 2 equivalent can be stored on the ligand periphery without metal-based redox changes and can be leveraged for catalytic hydrogenations. Kinetic and computational analysis suggests ligand hydrogenation proceeds by H 2 association followed by H–H scission. This complex is an unusual example where a synthetic system can mimic biology's ability to mediate H 2 transfer via secondary coordination sphere-based processes. 
    more » « less
  5. Abstract

    In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.

     
    more » « less