skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self‐Sustained Snapping Drives Autonomous Dancing and Motion in Free‐Standing Wavy Rings
Abstract Harnessing snapping, an instability phenomenon observed in nature (e.g., Venus flytraps), for autonomy has attracted growing interest in autonomous soft robots. However, achieving self‐sustained snapping and snapping‐driven autonomous motions in soft robots remains largely unexplored. Here, harnessing bistable, ribbon ring‐like structures for realizing self‐sustained snapping in a library of soft liquid‐crystal elastomer wavy rings under constant thermal and photothermal actuation are reported. The self‐sustained snapping induces continuous ring flipping that drives autonomous dancing or crawling motions on the ground and underwater. The 3D, free‐standing wavy rings employ either a highly symmetric or symmetry‐broken twisted shape with tunable geometric asymmetries. It is found that the former favors periodic self‐dancing motion in place due to isotropic friction, while the latter shows a directional crawling motion along the predefined axis of symmetry during fabrication due to asymmetric friction. It shows that the crawling speed can be tuned by the geometric asymmetries with a peak speed achieved at the highest geometric asymmetry. Lastly, it is shown that the autonomous crawling ring can also adapt its body shape to pass through a confined space that is over 30% narrower than its body size.  more » « less
Award ID(s):
2126072 2005374 2231419
PAR ID:
10397959
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
7
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Autonomous maze navigation is appealing yet challenging in soft robotics for exploring priori unknown unstructured environments, as it often requires human-like brain that integrates onboard power, sensors, and control for computational intelligence. Here, we report harnessing both geometric and materials intelligence in liquid crystal elastomer–based self-rolling robots for autonomous escaping from complex multichannel mazes without the need for human-like brain. The soft robot powered by environmental thermal energy has asymmetric geometry with hybrid twisted and helical shapes on two ends. Such geometric asymmetry enables built-in active and sustained self-turning capabilities, unlike its symmetric counterparts in either twisted or helical shapes that only demonstrate transient self-turning through untwisting. Combining self-snapping for motion reflection, it shows unique curved zigzag paths to avoid entrapment in its counterparts, which allows for successful self-escaping from various challenging mazes, including mazes on granular terrains, mazes with narrow gaps, and even mazes with in situ changing layouts. 
    more » « less
  2. Periodic spin–orbit motion is ubiquitous in nature, observed from electrons orbiting nuclei to spinning planets orbiting the Sun. Achieving autonomous periodic orbiting motions, along circular and noncircular paths, in soft mobile robotics is crucial for adaptive and intelligent exploration of unknown environments—a grand challenge yet to be accomplished. Here, we report leveraging a closed-loop twisted ring topology with a defect for an autonomous soft robot capable of achieving periodic spin-orbiting motions with programmed circular and re-programmed irregular-shaped trajectories. Constructed by bonding a twisted liquid crystal elastomer ribbon into a closed-loop ring topology, the robot exhibits three coupled periodic self-motions in response to constant temperature or constant light sources: inside-out flipping, self-spinning around the ring center, and self-orbiting around a point outside the ring. The coupled spinning and orbiting motions share the same direction and period. The spinning or orbiting direction depends on the twisting chirality, while the orbital radius and period are determined by the twisted ring geometry and thermal actuation. The flip–spin and orbiting motions arise from the twisted ring topology and a bonding site defect that breaks the force symmetry, respectively. By utilizing the twisting-encoded autonomous flip–spin–orbit motions, we showcase the robot’s potential for intelligently mapping the geometric boundaries of unknown confined spaces, including convex shapes like circles, squares, triangles, and pentagons and concaves shapes with multi-robots, as well as health monitoring of unknown confined spaces with boundary damages. 
    more » « less
  3. Soft robots that can harvest energy from environmental resources for autonomous locomotion is highly desired; however, few are capable of adaptive navigation without human interventions. Here, we report twisting soft robots with embodied physical intelligence for adaptive, intelligent autonomous locomotion in various unstructured environments, without on-board or external controls and human interventions. The soft robots are constructed of twisted thermal-responsive liquid crystal elastomer ribbons with a straight centerline. They can harvest thermal energy from environments to roll on outdoor hard surfaces and challenging granular substrates without slip, including ascending loose sandy slopes, crossing sand ripples, escaping from burying sand, and crossing rocks with additional camouflaging features. The twisting body provides anchoring functionality by burrowing into loose sand. When encountering obstacles, they can either self-turn or self-snap for obstacle negotiation and avoidance. Theoretical models and finite element simulation reveal that such physical intelligence is achieved by spontaneously snapping-through its soft body upon active and adaptive soft body-obstacle interactions. Utilizing this strategy, they can intelligently escape from confined spaces and maze-like obstacle courses without any human intervention. This work presents a de novo design of embodied physical intelligence by harnessing the twisting geometry and snap-through instability for adaptive soft robot-environment interactions. 
    more » « less
  4. Abstract Systems whose movement is highly dissipative provide an opportunity to both identify models easily and quickly optimize motions. Geometric mechanics provides means for reduction of the dynamics by environmental homogeneity, while the dissipative nature minimizes the role of second order (inertial) features in the dynamics. Here we extend the tools of geometric system identification to ``Shape-Underactuated Dissipative Systems (SUDS)'' -- systems whose motions are more dissipative than inertial, but whose actuation is restricted to a subset of the body shape coordinates. Many animal motions are SUDS, including micro-swimmers such as nematodes and flagellated bacteria, and granular locomotors such as snakes and lizards. Many soft robots are also SUDS, particularly those robots using highly damped series elastic actuators. Whether involved in locomotion or manipulation, these robots are often used to interface less rigidly with the environment. We motivate the use of SUDS models, and validate their ability to predict motion of a variety of simulated viscous swimming platforms. For a large class of SUDS, we show how the shape velocity actuation inputs can be directly converted into torque inputs suggesting that systems with soft pneumatic actuators or dielectric elastomers can be modeled with the tools presented. Based on fundamental assumptions in the physics, we show how our model complexity scales linearly with the number of passive shape coordinates. This offers a large reduction on the number of trials needed to identify the system model from experimental data, and may reduce overfitting. The sample efficiency of our method suggests its use in modeling, control, and optimization in robotics, and as a tool for the study of organismal motion in friction dominated regimes. 
    more » « less
  5. Soft robots hold significant potential in legged locomotion due to their inherent deformability, enabling enhanced adaptability to various environmental conditions and the generation of diverse locomotion gaits. While various soft robots have been proposed for terrestrial locomotion, research on dynamically-stable locomotion, such as trotting, with actuated soft bending limbs remains limited. We introduce a pneumatically-actuated soft quadruped featuring a soft body capable of a variety of dynamically-stable trotting locomotion. We utilize soft limb kinematics and parameterize fundamental limb locomotion to obtain quadrupedal locomotion trajectories for both linear and curvilinear motions. We also employ a physics-enabled dynamic model to optimize and evaluate trotting locomotion trajectories for dynamic stability. We further validate the stable locomotion trajectories through empirical experiments conducted on a soft quadruped prototype. The results demonstrate that the quadruped trots at a peak speed of 1.24 body lengths per second when traversing flat and uneven terrains, including slopes, cluttered areas, and naturalistic irregular surfaces. Furthermore, we compare the energy efficiency between trotting and crawling locomotion. The findings reveal that trotting is significantly more energy-efficient than crawling, with an average energy saving of up to 42%.Note to Practitioners—This paper was motivated by the challenge of achieving dynamically stable and efficient locomotion in soft quadrupeds. Many soft-legged robots are typically designed for statically stable, albeit inefficient and slow, locomotion gaits such as crawling. Our research aims to address this practical challenge of improving mobility in soft-legged robots. We develop a novel soft quadruped with pneumatically-actuated soft limbs that achieves efficient trotting that is 42% more energy-efficient than crawling. This work is particularly relevant for industries requiring adaptable and efficient navigation in environments, such as search and rescue, agricultural monitoring, and exploration. The development and optimization of trotting gaits through a physics-enabled dynamic model for dynamic stability provide a foundational framework for enhancing the adaptability and operational utility of soft robots. While our findings mark a significant step forward, challenges remain in deploying these locomotion strategies on autonomous untethered robots with onboard sensor feedback. Future research will focus on these areas, aiming to improve the practical deployment and robustness of soft robotic locomotive systems. 
    more » « less