skip to main content


Title: Pelagic calcium carbonate production and shallow dissolution in the North Pacific Ocean
Abstract

Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3production is higher than the sinking flux of CaCO3at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3cycle and its impact on atmospheric CO2will largely depend on how the poorly-understood processes that determine whether CaCO3is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification.

 
more » « less
Award ID(s):
1756517
NSF-PAR ID:
10397972
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Planktonic foraminifera are one of the primary calcifiers in the modern ocean, contributing 23%–56% of total global pelagic carbonate production. However, a mechanistic understanding of how physiology and environmental conditions control their abundance and distribution is lacking, hindering the projection of the impact of future climate change. This understanding is important, not only for ecosystem dynamics, but also for marine carbon cycling because of foraminifera's key role in carbonate production. Here we present and apply a global trait‐based ecosystem model of non‐spinose planktonic foraminifera (‘ForamEcoGEnIE’) to assess their ecology and global distribution under future climate change. ForamEcoGEnIE considers the traits of calcium carbonate production, shell size, and foraging. It captures the main characteristic of biogeographical patterns of non‐spinose species – with maximum biomass concentrations found in mid‐ to high‐latitude waters and upwelling areas. The model also reproduces the magnitude of global carbonate production relatively well, although the foraminifera standing stock is systematically overestimated. In response to future scenarios of rising atmospheric CO2(RCP6 and RCP8.5), on a regional scale, the modelled foraminifera biomass and export flux increases in the subpolar regions of the North Atlantic and the Southern Ocean while it decreases everywhere else. In the absence of adaptation, the biomass decline in the low‐latitude South Pacific suggests extirpation. The model projects a global average loss in non‐spinose foraminifera biomass between 8% (RCP6) and 11% (RCP8.5) by 2050 and between 14% and 18% by 2100 as a response to ocean warming and associated changes in primary production and ecological dynamics. Global calcium carbonate flux associated with non‐spinose foraminifera declines by 13%–18% by 2100. That decline can slow down the ocean carbonate pump and create short‐term positive feedback on rising atmosphericpCO2.

     
    more » « less
  2. Abstract

    The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid‐phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid‐phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.

     
    more » « less
  3. Abstract

    Ocean alkalinity plays a fundamental role in the apportionment of CO2between the atmosphere and the ocean. The primary driver of the ocean's vertical alkalinity distribution is the formation of calcium carbonate (CaCO3) by organisms at the ocean surface and its dissolution at depth. This so‐called “CaCO3counterpump” is poorly constrained, however, both in terms of how much CaCO3is exported from the surface ocean, and at what depth it dissolves. Here, we created a steady‐state model of global ocean alkalinity using Ocean Circulation Inverse Model transport, biogeochemical cycling, and field‐tested calcite and aragonite dissolution kinetics. We find that limiting CaCO3dissolution to below the aragonite and calcite saturation horizons cannot explain excess alkalinity in the upper ocean, and that models allowing dissolution above the saturation horizons best match observations. Linking dissolution to organic matter respiration, or imposing a constant dissolution rate both produce good model fits. Our best performing models require export between 1.1 and 1.8 Gt PIC y−1(from 73 m), but all converge to 1.0 Gt PIC y−1export at 279 m, indicating that both high‐ and low‐export scenarios can match observations, as long as high export is coupled to high dissolution in the upper ocean. These results demonstrate that dissolution is not a simple function of seawater CaCO3saturation (Ω) and calcite or aragonite solubility, and that other mechanisms, likely related to the biology and ecology of calcifiers, must drive significant dissolution throughout the water column.

     
    more » « less
  4. Abstract

    Sedimentary records show that calcium carbonate (CaCO3) preservation fluctuated during the Eocene. These fluctuations are well documented for the equatorial Pacific. However, data from other basins are sparse. In this study, we report new middle and late Eocene bulk calcium carbonate percentages and accumulation rates from the northwestern Pacific (Ocean Drilling Program—ODP—Site 884) and the Atlantic (ODP Sites 1053, 1090, and 1263) Oceans; in addition, we calculate CaCO3accumulation rates for sites with published percentage bulk CaCO3to expand geographic and paleobathymetric coverage. Using these data, we investigate the response of the carbonate cycle to environmental changes (e.g., temperatures, primary productivity, weathering, and ocean circulation) at the beginning of the greenhouse‐icehouse transition (∼43–34 Ma). Our results show that in the middle to late Eocene CaCO3accumulation rates were highly variable at different paleodepths and ocean basins suggesting that the evolution of carbonate accumulation rates over the Eocene was influenced by different processes in different locations. In particular, our data emphasize the role of surface CaCO3production and ocean ventilation in driving changes in CaCO3preservation and burial at the seafloor. Our study also highlights the need for a better understanding of the processes regulating CaCO3surface production today in order to correctly interpret geological records.

     
    more » « less
  5. Abstract

    Larvae of marine calcifying organisms are particularly vulnerable to the adverse effects of elevatedpCO2on shell formation because of their rapid calcification rates, reduced capacity to isolate calcifying fluid from seawater, and use of more soluble polymorphs of calcium carbonate. However, parental exposure to elevatedpCO2could benefit larval shell formation through transgenerational plastic responses. We examined the capacity of intergenerational exposure to mitigate the adverse effects of elevatedpCO2on Eastern oyster (Crassostrea virginica) early larval shell growth, shell morphology, and survival. Adult oysters were exposed to control (572 ppmpCO2) or elevatedpCO2(2827 ppmpCO2) conditions for 30 d during reproductive conditioning. Offspring from each parental treatment were produced using a partial North Carolina II cross design and grown under control and elevatedpCO2conditions for 3 d. We found evidence of transgenerational plasticity in early larval shell growth and morphology, but not in survival, in response to the parentalpCO2exposure. Larvae from parents exposed to elevatedpCO2exhibited faster shell growth rates than larvae from control parents, with this effect being significantly larger when larvae were grown under elevatedpCO2compared to control conditions. Parental exposure to elevatedpCO2, however, was insufficient to completely counteract the adverse effects of the prescribed elevatedpCO2on early larval shell formation and survival. Nevertheless, these results suggest that oysters have some capacity to acclimate intergenerationally to ocean acidification.

     
    more » « less