ABSTRACT Neutron binary star mergers have long been proposed as sufficiently neutron rich environments that could support the synthesis of rapid neutron capture elements (r-process elements) such as gold. However, the literature reveals that beyond neutral and singly ionized systems, there is an incompleteness of atomic data for the remaining ion stages of importance for mergers. In this work, we report on relativistic atomic structure calculations for Au i–Au iii using the grasp0 codes. Comparisons to calculations using the Flexible Atomic Code suggest uncertainties on average of 9.2 per cent, 5.7 per cent, and 3.8 per cent for Au i–Au iii level energies. Agreement around ∼50 per cent is achieved between our computed A-values and those in the literature, where available. Using the grasp0 structure of Au i, we calculated electron-impact excitation rate coefficients and use a collisional-radiative model to explore the excitation dynamics and line ratio diagnostics possible in neutron star merger environments. We find that proper accounting of metastable populations is critical for extracting useful information from ultraviolet–visible line ratio diagnostics of Au i. As a test of our data, we applied our electron-impact data to study a gold hollow cathode spectrum in the literature and diagnosed the plasma conditions as Te = 3.1 ± 1.2 eV and $$n_\textrm {e} = 2.7^{+1.3}_{-0.9}\times 10^{13}$$ cm−3.
more »
« less
The excitation of CO in CO-dominated cometary comae
ABSTRACT An abundance of CO significantly surpassing the abundance of H2O is observed in the comae of comets at large heliocentric distances. In these environments, CO molecules can be the most abundant species and they may be therefore the dominant projectiles inducing collisional excitation of the cometary molecules. It is thus of high interest to investigate the excitation of CO by CO. This article provides a new set of CO–CO collisional rate coefficients for temperatures up to 150 K and for CO rotational levels j1 up to 10. These data are obtained from quantum scattering calculations using the coupled states approximation. They are used in a simple radiative transfer model in order to test their impact on the excitation of cometary CO. Because mutual (de-)excitations of the target and projectile are important, the CO projectile was assumed to be thermalized at the kinetic temperature. We found that the non-local thermodynamical equilibrium regime extends for CO densities in the range 103–107 cm−3. We also observed that as soon as the CO/H2O ratio is larger than 70 per cent/30 per cent, the contribution of H2O collisions can be neglected. Similarly, the excitation of CO by CO may be ignored for relatively low CO/H2O density ratios (≤30 per cent/70 per cent). Finally, when the coma is a ∼50 per cent/50 per cent mixture of CO and H2O, the contribution of both colliders is similar and has to be considered.
more »
« less
- Award ID(s):
- 2009253
- PAR ID:
- 10397980
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 520
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3887-3894
- Size(s):
- p. 3887-3894
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Although stellar radii from asteroseismic scaling relations agree at the per cent level with independent estimates for main sequence and most first-ascent red giant branch (RGB) stars, the scaling relations over-predict radii at the tens of per cent level for the most luminous stars ($$R \gtrsim 30 \, \mathrm{R}_{\odot }$$). These evolved stars have significantly superadiabatic envelopes, and the extent of these regions increase with increasing radius. However, adiabaticity is assumed in the theoretical derivation of the scaling relations as well as in corrections to the large frequency separation. Here, we show that a part of the scaling relation radius inflation may arise from this assumption of adiabaticity. With a new reduction of Kepler asteroseismic data, we find that scaling relation radii and Gaia radii agree to within at least 2 per cent for stars with $$R \lesssim 30\, \mathrm{R}_{\odot }$$, when treated under the adiabatic assumption. The accuracy of scaling relation radii for stars with $$50\, \mathrm{R}_{\odot }\lesssim R \lesssim 100\, \mathrm{R}_{\odot }$$, however, is not better than $$10~{{\ \rm per \, cent}}-15~{{\ \rm per \, cent}}$$ using adiabatic large frequency separation corrections. We find that up to one third of this disagreement for stars with $$R \approx 100\, \mathrm{R}_{\odot }$$ could be caused by the adiabatic assumption, and that this adiabatic error increases with radius to reach 10 per cent at the tip of the RGB. We demonstrate that, unlike the solar case, the superadiabatic gradient remains large very deep in luminous stars. A large fraction of the acoustic cavity is also in the optically thin atmosphere. The observed discrepancies may therefore reflect the simplified treatment of convection and atmospheres.more » « less
-
ABSTRACT We present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope(HST) ultraviolet-optical imaging of nearby spiral galaxies ($$D\lesssim 20\, \textrm{Mpc}$$) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)–HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on neural network architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert or three astronomers, and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS–HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70 per cent, 40 per cent, 40–50 per cent, and 50–70 per cent for class 1, 2, 3 star clusters, and class 4 non-clusters, respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70–80 per cent, 40–50 per cent, 40–50 per cent, and 60–70 per cent). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized data set of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study.more » « less
-
ABSTRACT The low-J rotational transitions of 12CO are commonly used to trace the distribution of molecular gas in galaxies. Their ratios are sensitive to excitation and physical conditions in the molecular gas. Spatially resolved studies of CO ratios are still sparse and affected by flux calibration uncertainties, especially since most do not have high angular resolution or do not have short-spacing information and hence miss any diffuse emission. We compare the low-J CO ratios across the disc of two massive, star-forming spiral galaxies NGC 2903 and NGC 3627 to investigate whether and how local environments drive excitation variations at GMC scales. We use Atacama Large Millimeter Array (ALMA) observations of the three lowest-J CO transitions at a common angular resolution of 4 arcsec (190 pc). We measure median line ratios of $$R_{21}=0.67^{+0.13}_{-0.11}$$, $$R_{32}=0.33^{+0.09}_{-0.08}$$, and $$R_{31}=0.24^{+0.10}_{-0.09}$$ across the full disc of NGC 3627. We see clear CO line ratio variation across the galaxy consistent with changes in temperature and density of the molecular gas. In particular, towards the centre, R21, R32, and R31 increase by 35 per cent, 50 per cent, and 66 per cent, respectively, compared to their average disc values. The overall line ratio trends suggest that CO(3–2) is more sensitive to changes in the excitation conditions than the two lower J transitions. Furthermore, we find a similar radial R32 trend in NGC 2903, albeit a larger disc-wide average of $$\langle R_{32}\rangle =0.47^{+0.14}_{-0.08}$$. We conclude that the CO low-J line ratios vary across environments in such a way that they can trace changes in the molecular gas conditions, with the main driver being changes in temperature.more » « less
-
ABSTRACT We study stellar-halo formation using six Milky-Way-mass galaxies in FIRE-2 cosmological zoom simulations. We find that $$5{-}40{{\ \rm per\ cent}}$$ of the outer (50–300 kpc) stellar halo in each system consists of in-situ stars that were born in outflows from the main galaxy. Outflow stars originate from gas accelerated by superbubble winds, which can be compressed, cool, and form co-moving stars. The majority of these stars remain bound to the halo and fall back with orbital properties similar to the rest of the stellar halo at z = 0. In the outer halo, outflow stars are more spatially homogeneous, metal-rich, and alpha-element-enhanced than the accreted stellar halo. At the solar location, up to $$\sim \!10 {{\ \rm per\ cent}}$$ of our kinematically identified halo stars were born in outflows; the fraction rises to as high as $$\sim \!40{{\ \rm per\ cent}}$$ for the most metal-rich local halo stars ([Fe/H] >−0.5). Such stars can be retrograde and create features similar to the recently discovered Milky Way ‘Splash’ in phase space. We conclude that the Milky Way stellar halo could contain local counterparts to stars that are observed to form in molecular outflows in distant galaxies. Searches for such a population may provide a new, near-field approach to constraining feedback and outflow physics. A stellar halo contribution from outflows is a phase-reversal of the classic halo formation scenario of Eggen, Lynden-Bell & Sandange, who suggested that halo stars formed in rapidly infalling gas clouds. Stellar outflows may be observable in direct imaging of external galaxies and could provide a source for metal-rich, extreme-velocity stars in the Milky Way.more » « less
An official website of the United States government
