skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Mechanism of Action of Hepatitis B Virus Capsid Assembly Modulators Can Be Predicted from Binding to Early Assembly Intermediates
Award ID(s):
1828187
PAR ID:
10398107
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Medicinal Chemistry
Volume:
65
Issue:
6
ISSN:
0022-2623
Page Range / eLocation ID:
4854 to 4864
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Short oligomeric peptides typically do not exhibit the entanglements required for the formation of nanofibers via electrospinning. In this study, the synthesis of nanofibers composed of tyrosine‐based dipeptides via electrospinning, has been demonstrated. The morphology, mechanical stiffness, biocompatibility, and stability under physiological conditions of such biodegradable nanofibers were characterized. The electrospun peptide nanofibers have diameters less than 100 nm and high mechanical stiffness. Raman and infrared signatures of the peptide nanofibers indicate that the electrostatic forces and solvents used in the electrospinning process lead to secondary structures different from self‐assembled nanostructures composed of similar peptides. Crosslinking of the dipeptide nanofibers using 1,6‐diisohexanecyanate (HMDI) improved the physiological stability, and initial biocompatibility testing with human and rat neural cell lines indicate no cytotoxicity. Such electrospun peptides open up a realm of biomaterials design with specific biochemical compositions for potential biomedical applications such as tissue repair, drug delivery, and coatings for implants. 
    more » « less
  2. Boja\'; Merelli, E.; Woodruff, D. P. (Ed.)
  3. Abstract Ecological communities are assembled through a series of multiple processes, including dispersal, abiotic and biotic filtering, and ecological drift. Although these assembly processes act in concert to structure local communities, their relative importance is considerably variable among study systems. While such contingency of community assembly has been widely appreciated, the empirical and theoretical evidence is scattered around in the literature, and few efforts have been made to synthesize it. In this mini‐review, we summarize the accumulated evidence of the context‐dependency of community assembly rules, to reach a rough generalization of the contingency. Specifically, we argue that spatial and temporal dimensions can serve as general axes that regulate the relative importance of assembly processes. To this end, we synthesize the current understanding of how the relative importance of multiple assembly processes changes with spatial scales and complexity, and with time in the long and short terms. This review concludes that spatial and temporal dimensions can be common currencies of community assembly rules that are shared across various systems. 
    more » « less