skip to main content


Title: Classification of electrically-evoked potentials in the parkinsonian subthalamic nucleus region
Abstract

Electrically evoked compound action potentials (ECAPs) generated in the subthalamic nucleus (STN) contain features that may be useful for titrating deep brain stimulation (DBS) therapy for Parkinson’s disease. Delivering a strong therapeutic effect with DBS therapies, however, relies on selectively targeting neural pathways to avoid inducing side effects. In this study, we investigated the spatiotemporal features of ECAPs in and around the STN across parameter sweeps of stimulation current amplitude, pulse width, and electrode configuration, and used a linear classifier of ECAP responses to predict electrode location. Four non-human primates were implanted unilaterally with either a directional (n = 3) or non-directional (n = 1) DBS lead targeting the sensorimotor STN. ECAP responses were characterized by primary features (within 1.6 ms after a stimulus pulse) and secondary features (between 1.6 and 7.4 ms after a stimulus pulse). Using these features, a linear classifier was able to accurately differentiate electrodes within the STN versus dorsal to the STN in all four subjects. ECAP responses varied systematically with recording and stimulating electrode locations, which provides a subject-specific neuroanatomical basis for selecting electrode configurations in the treatment of Parkinson’s disease with DBS therapy.

 
more » « less
NSF-PAR ID:
10398158
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) is a surgical procedure for alleviating motor symptoms of Parkinson’s Disease (PD). The pattern of DBS (e.g., the electrode pairs used and the intensity of stimulation) is usually optimized by trial and error based on a subjective evaluation of motor function. We tested the hypotheses that DBS releases glutamate in selected basal ganglia nuclei and that the creation of 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions alters glutamate release during DBS in those basal ganglia nuclei. We studied the relationship between a pseudo-random binary sequence of DBS and glutamate levels in the STN itself or in the globus pallidus (GP) in anesthetized, control, and 6-OHDA-treated rats. We characterized the stimulus–response relationships between DBS and glutamate levels using a transfer function estimated using System Identification. Stimulation of the STN elevated glutamate levels in the GP and in the STN. Although the 6-OHDA treatment did not affect glutamate dynamics in the STN during DBS in the STN, the transfer function between DBS in the STN and glutamate levels in the GP was significantly altered by the presence or absence of 6-OHDA-induced lesions. Thus, glutamate responses in the GP in the 6-OHDA-treated animals (but not in the STN) depended on dopaminergic inputs. For this reason, measuring glutamate levels in the GP may provide a useful feedback target in a closed-loop DBS device in patients with PD since the dynamics of glutamate release in the GP during DBS seem to reflect the loss of dopaminergic neurons in the SNc. 
    more » « less
  2. Introduction:Current brain-computer interfaces (BCIs) primarily rely on visual feedback. However, visual feedback may not be sufficient for applications such as movement restoration, where somatosensory feedback plays a crucial role. For electrocorticography (ECoG)-based BCIs, somatosensory feedback can be elicited by cortical surface electro-stimulation [1]. However, simultaneous cortical stimulation and recording is challenging due to stimulation artifacts. Depending on the orientation of stimulating electrodes, their distance to the recording site, and the stimulation intensity, these artifacts may overwhelm the neural signals of interest and saturate the recording bioamplifiers, making it impossible to recover the underlying information [2]. To understand how these factors affect artifact propagation, we performed a preliminary characterization of ECoG signals during cortical stimulation.Materials/Methods/ResultsECoG electrodes were implanted in a 39-year old epilepsy patient as shown in Fig. 1. Pairs of adjacent electrodes were stimulated as a part of language cortical mapping. For each stimulating pair, a charge-balanced biphasic square pulse train of current at 50 Hz was delivered for five seconds at 2, 4, 6, 8 and 10 mA. ECoG signals were recorded at 512 Hz. The signals were then high-pass filtered (≥1.5 Hz, zero phase), and the 5-second stimulation epochs were segmented. Within each epoch, artifact-induced peaks were detected for each electrode, except the stimulating pair, where signals were clipped due to amplifier saturation. These peaks were phase-locked across electrodes and were 20 ms apart, thus matching the pulse train frequency. The response was characterized by calculating the median peak within the 5-second epochs. Fig. 1 shows a representative response of the right temporal grid (RTG), with the stimulation channel at RTG electrodes 14 and 15. It also shows a hypothetical amplifier saturation contour of an implantable, bi-directional, ECoG-based BCI prototype [2], assuming the supply voltage of 2.2 V and a gain of 66 dB. Finally, we quantify the worstcase scenario by calculating the largest distance between the saturation contour and the midpoint of each stimulating channel.Discussion:Our results indicate that artifact propagation follows a dipole potential distribution with the extent of the saturation region (the interior of the white contour) proportional to the stimulation amplitude. In general, the artifacts propagated farthest when a 10 mA current was applied with the saturation regions extending from 17 to 32 mm away from the midpoint of the dipole. Consistent with the electric dipole model, this maximum spread happened along the direction of the dipole moment. An exception occurred at stimulation channel RTG11-16, for which an additional saturation contour emerged away from the dipole contour (not shown), extending the saturation region to 41 mm. Also, the worst-case scenario was observed at 6 mA stimulation amplitude. This departure could be a sign of a nonlinear, switch-like behavior, wherein additional conduction pathways could become engaged in response to sufficiently high stimulation.Significance:While ECoG stimulation is routinely performed in the clinical setting, quantitative studies of the resulting signals are lacking. Our preliminary study demonstrates that stimulation artifacts largely obey dipole distributions, suggesting that the dipole model could be used to predict artifact propagation. Further studies are necessary to ascertain whether these results hold across other subjects and combinations of stimulation/recording grids. Once completed, these studies will reveal practical design constraints for future implantable bi-directional ECoG-based BCIs. These include parameters such as the distances between and relative orientations of the stimulating and recording electrodes, the choice of the stimulating electrodes, the optimal placement of the reference electrode, and the maximum stimulation amplitude. These findings would also have important implications for the design of custom, low-power bioamplifiers for implantable bi-directional ECoG-based BCIs.References:[1] Hiremath, S. V., et al. "Human perception of electrical stimulation on the surface of somatosensory cortex." PloS one 12.5 (2017): e0176020.[2] Rouse, A. G., et al. "A chronic generalized bi-directional brain-machine interface." Journal of Neural Engineering 8.3 (2011): 036018 
    more » « less
  3. Abstract

    The mechanism of action of deep brain stimulation (DBS) to the basal ganglia for Parkinson’s disease remains unclear. Studies have shown that DBS decreases pathological beta hypersynchrony between the basal ganglia and motor cortex. However, little is known about DBS’s effects on long range corticocortical synchronization. Here, we use machine learning combined with graph theory to compare resting-state cortical connectivity between the off and on-stimulation states and to healthy controls. We found that turning DBS on increased high beta and gamma band synchrony (26 to 50 Hz) in a cortical circuit spanning the motor, occipitoparietal, middle temporal, and prefrontal cortices. The synchrony in this network was greater in DBS on relative to both DBS off and controls, with no significant difference between DBS off and controls. Turning DBS on also increased network efficiency and strength and subnetwork modularity relative to both DBS off and controls in the beta and gamma band. Thus, unlike DBS’s subcortical normalization of pathological basal ganglia activity, it introduces greater synchrony relative to healthy controls in cortical circuitry that includes both motor and non-motor systems. This increased high beta/gamma synchronization may reflect compensatory mechanisms related to DBS’s clinical benefits, as well as undesirable non-motor side effects.

     
    more » « less
  4. Abstract

    Objective. Patients with photovoltaic subretinal implant PRIMA demonstrated letter acuity ∼0.1 logMAR worse than sampling limit for 100μm pixels (1.3 logMAR) and performed slower than healthy subjects tested with equivalently pixelated images. To explore the underlying differences between natural and prosthetic vision, we compare the fidelity of retinal response to visual and subretinal electrical stimulation through single-cell modeling and ensemble decoding.Approach. Responses of retinal ganglion cells (RGCs) to optical or electrical white noise stimulation in healthy and degenerate rat retinas were recorded via multi-electrode array. Each RGC was fit with linear–nonlinear and convolutional neural network models. To characterize RGC noise, we compared statistics of spike-triggered averages (STAs) in RGCs responding to electrical or visual stimulation of healthy and degenerate retinas. At the population level, we constructed a linear decoder to determine the accuracy of the ensemble of RGCs onN-way discrimination tasks.Main results. Although computational models can match natural visual responses well (correlation ∼0.6), they fit significantly worse to spike timings elicited by electrical stimulation of the healthy retina (correlation ∼0.15). In the degenerate retina, response to electrical stimulation is equally bad. The signal-to-noise ratio of electrical STAs in degenerate retinas matched that of the natural responses when 78 ± 6.5% of the spikes were replaced with random timing. However, the noise in RGC responses contributed minimally to errors in ensemble decoding. The determining factor in accuracy of decoding was the number of responding cells. To compensate for fewer responding cells under electrical stimulation than in natural vision, more presentations of the same stimulus are required to deliver sufficient information for image decoding.Significance. Slower-than-natural pattern identification by patients with the PRIMA implant may be explained by the lower number of electrically activated cells than in natural vision, which is compensated by a larger number of the stimulus presentations.

     
    more » « less
  5. Abstract

    Intracortical microstimulation (ICMS) is commonly used in many experimental and clinical paradigms; however, its effects on the activation of neurons are still not completely understood. To document the responses of cortical neurons in awake nonhuman primates to stimulation, we recorded single-unit activity while delivering single-pulse stimulation via Utah arrays implanted in primary motor cortex (M1) of three macaque monkeys. Stimuli between 5 and 50 μA delivered to single channels reliably evoked spikes in neurons recorded throughout the array with delays of up to 12 ms. ICMS pulses also induced a period of inhibition lasting up to 150 ms that typically followed the initial excitatory response. Higher current amplitudes led to a greater probability of evoking a spike and extended the duration of inhibition. The likelihood of evoking a spike in a neuron was dependent on the spontaneous firing rate as well as the delay between its most recent spike time and stimulus onset. Tonic repetitive stimulation between 2 and 20 Hz often modulated both the probability of evoking spikes and the duration of inhibition; high-frequency stimulation was more likely to change both responses. On a trial-by-trial basis, whether a stimulus evoked a spike did not affect the subsequent inhibitory response; however, their changes over time were often positively or negatively correlated. Our results document the complex dynamics of cortical neural responses to electrical stimulation that need to be considered when using ICMS for scientific and clinical applications.

     
    more » « less