Traditionally, ground-based spectrophotometric observations probing transiting exoplanet atmospheres have employed a linear map between comparison and target star light curves (e.g. via differential spectrophotometry) to correct for systematics contaminating the transit signal. As an alternative to this conventional method, we introduce a new Gaussian Processes (GP) regression-based method to analyse ground-based spectrophotometric data. Our new method allows for a generalized non-linear mapping between the target transit light curves and the time-series used to detrend them. This represents an improvement compared to previous studies because the target and comparison star fluxes are affected by different telluric and instrumental systematics, which are complex and non-linear. We apply our method to six Gemini/GMOS transits of the warm (Teq = 990 K) Neptune HAT-P-26b. We obtain on average ∼20 per cent better transit depth precision and residual scatter on the white light curve compared to the conventional method when using the comparison star light curve as a GP regressor and ∼20 per cent worse when explicitly not using the comparison star. Ultimately, with only a cost of 30 per cent precision on the transmission spectra, our method overcomes the necessity of using comparison stars in the instrument field of view, which has been one of the limiting factors formore »
Clouds and other features in exoplanet and brown dwarf atmospheres cause variations in brightness as they rotate in and out of view. Ground-based instruments reach the high contrasts and small inner working angles needed to monitor these faint companions, but their small fields of view lack simultaneous photometric references to correct for non-astrophysical variations. We present a novel approach for making ground-based light curves of directly imaged companions using high-cadence differential spectrophotometric monitoring, where the simultaneous reference is provided by a double-grating 360○ vector Apodizing Phase Plate (dgvAPP360) coronagraph. The dgvAPP360 enables high-contrast companion detections without blocking the host star, allowing it to be used as a simultaneous reference. To further reduce systematic noise, we emulate exoplanet transmission spectroscopy, where the light is spectrally dispersed and then recombined into white-light flux. We do this by combining the dgvAPP360 with the infrared Arizona Lenslets for Exoplanet Spectroscopy integral field spectrograph on the Large Binocular Telescope Interferometer. To demonstrate, we observed the red companion HD 1160 B (separation ∼780 mas) for one night, and detect $8.8{{\ \rm per\ cent}}$ semi-amplitude sinusoidal variability with an ∼3.24 h period in its detrended white-light curve. We achieve the greatest precision in ground-based high-contrast imaging light curves of more »
- Publication Date:
- NSF-PAR ID:
- 10398219
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 520
- Issue:
- 3
- Page Range or eLocation-ID:
- p. 4235-4257
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, withmore »
-
Abstract We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0.″2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5
σ upper limit ofM P < 7.1M ⊕andρ P < 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20M J ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620more » -
Thermonuclear Supernovae (SNe Ia) are one of the building blocks of modern cosmology and laboratories for the explosion physics of White Dwarf star/s (WD) in close binary systems. The second star may be aWD(double degenerate systems, DD), or a non-degenerated star (SD) with a main sequence star, red giant or a helium star as companion (Branch et al. 1995; Nomoto et al. 2003; Wang & Han 2012). Light curves and spectra of the explosion look similar because a ’stellar amnesia’ (H¨oflich et al. 2006). Basic nuclear physics determines the progenitor structure and the explosion physics, breaking the link between progenitor evolution, and the explosion, resulting in three main classes of explosion scenarios: a) dynamical merging of two WD and a heating on time scales of seconds (Webbink 1984; Isern et al. 2011), b) surface helium detonations on top of a WD which ignite the central C/O by a detonation wave traveling inwards (Nomoto 1982; Hoeflich & Khokhlov 1996; Kromer et al. 2010); c) compressional heating in an accreting WD approaching the Chandrasekar mass on time of up to 108 years which may originated from SD and DD systems (Whelan & Iben 1973; Piersanti et al. 2003). Simulations of the explosionsmore »
-
Quasi-simultaneous observations of radio and X-ray variability in three radio-quiet Seyfert galaxies
ABSTRACT Radio variability in some radio-quiet (RQ) active galactic nuclei suggests emission from regions close to the central engine, possibly the outer accretion disc corona. If the origins of the radio and the X-ray emission are physically related, their emission may be temporarily correlated, possibly with some time delays. We present the results of quasi-simultaneous radio and X-ray monitoring of three RQ Seyfert galaxies, Mrk 110, Mrk 766, and NGC 4593, carried out with the Very Large Array at 8.5 GHz over a period of about 300 d, and with the Rossi X-ray Timing Explorer at 2–10 keV over a period of about 2000 d. The radio core variability is likely detected in the highest resolution (A configuration) observations of Mrk 110 and NGC 4593, with a fractional variability amplitude of 6.3 per cent and 9.5 per cent, respectively. A cross-correlation analysis suggests an apparently strong (Pearson r = −0.89) and highly significant correlation (p = 1 × 10−6) in Mrk 110, with the radio lagging the X-ray by 56 d. However, a further analysis of the r values distribution for physically unrelated long time delays reveals that this correlation is not significant. This occurs since the Pearson correlation assumes white noise, while both the X-ray and the radio light curves follow red noise, which dramatically increases the chance,more »