skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination of ring-level dynamic modulus of elasticity in loblolly pine from measurements of ultrasonic velocity and specific gravity
Abstract Wood stiffness (modulus of elasticity, MOE) is an important property for conifer wood, with the variability in MOE largely being a function of both the specific gravity (SG) (wood density) and the angle of the microfibrils within the S2 layer of longitudinal tracheids. Rapid analysis techniques can be used together to quantify MOE; while SG can be determined with relative ease, this is not the case for microfibril angle, requiring expensive X-ray diffraction equipment. An alternative to microfibril angle is to measure longitudinal acoustic velocity. The objective of this study was to measure and then model the within tree variation in dynamic MOE (MOEdyn) by developing the methodology to measure ultrasonic velocity (USV) in radial samples from pith to bark using ultrasonic frequencies (>20 kHz). A total of 419 pith-to-bark radial strips, collected from multiple height levels in 92 loblolly pine (Pinus taeda) trees, were processed to obtain matching SG (2mm longitudinal) and USV (8.2-mm longitudinal) samples. Ring-by-ring SG was measured using X-ray densitometry and time-of-flight USV was measured at a 10-mm radial resolution from pith to bark. A subset of samples was sent to SilviScan to determine microfibril angle using X-ray diffraction. The relationship between microfibril angle and USV was strong (R2 = 0.91, RMSE = 2.6°). Nonlinear mixed-effects models were then developed to predict radial variation in SG, USV and MOEdyn. Fixed effects for the models, which included cambial age and height of disk within tree, had pseudo R2 values of 0.67 for SG (RMSE = 0.051), 0.71 for USV (RMSE = 316 m/s) and 0.69 for MOEdyn (RMSE = 1.9 GPa). When combined with SG measurements from X-ray densitometry, USV measurements from pith to bark are a powerful tool for assessing variability in wood stiffness.  more » « less
Award ID(s):
1916720
PAR ID:
10398228
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Forestry
Volume:
96
Issue:
4
ISSN:
0015-752X
Format(s):
Medium: X Size: p. 588-604
Size(s):
p. 588-604
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning approaches have been adopted in Forestry research including tree classification and inventory prediction. In this study, we proposed an application of a deep learning approach, Temporal Convolution Network, on sequences of radial resistograph profiles to identify non-thrive trees and to predict wood density. Non-destructive resistance drilling measurements on South and West orientations of 274 trees in a 41-year-old Douglas-fir stand in Marion County, Oregon, USA were used as input series. Non-thrive trees were defined based on their changes in social status since establishment. Wood density was derived by X-ray densitometry from cores obtained by increment borers. Data was split for cross validation. Optimal models were fine-tuned with training and validation datasets, then run with test datasets for model evaluation metrics. Results confirmed that the application of the Temporal Convolution Network on resistograph profiles enables non-thrive tree identification with the probability, represented by the area under the Receiver Operator Characteristic curve, equal to 0.823. Temporal Convolution Network for wood density prediction showed a slight improvement in accuracy (RMSE = 18.22) compared to the traditional linear (RMSE = 20.15) and non-linear (RMSE = 20.33) regression methods. We suggest that the use of machine learning algorithms can be a promising methodology for the analysis of sequential data from non-destructive devices. 
    more » « less
  2. Cernusak, Lucas (Ed.)
    Abstract Nonstructural carbohydrates (NSCs) play a critical role in plant physiology and metabolism, yet we know little about their distribution within individual organs such as the stem. This leaves many open questions about whether reserves deep in the stem are metabolically active and available to support functional processes. To gain insight into the availability of reserves, we measured radial patterns of NSCs over the course of a year in the stemwood of temperate trees with contrasting wood anatomy (ring porous vs diffuse porous). In a subset of trees, we estimated the mean age of soluble sugars within and between different organs using the radiocarbon (14C) bomb spike approach. First, we found that NSC concentrations were the highest and most seasonally dynamic in the outermost stemwood segments for both ring-porous and diffuse-porous trees. However, while the seasonal fluctuation of NSCs was dampened in deeper stemwood segments for ring-porous trees, it remained high for diffuse-porous trees. These NSC dynamics align with differences in the proportion of functional sapwood and the arrangement of vessels between ring-porous and diffuse-porous trees. Second, radial patterns of 14C in the stemwood showed that sugars became older when moving toward the pith. The same pattern was found in the coarse roots. Finally, when taken together, our results highlight how the radial distribution and age of NSCs relate to wood anatomy and suggest that while deeper, and likely older, reserves in the stemwood fluctuated across the seasons, the deepest reserves at the center of the stem were not used to support tree metabolism under usual environmental conditions. 
    more » « less
  3. Intra-annual density fluctuations (IADFs) are triggered by environmental cues, but whether they are distributed uniformly throughout the stem is not well documented. The spatial distribution of IADFs could help us understand variations in cambial sensitivity to environmental cues throughout the tree. We investigate how IADF distribution varies radially, longitudinally, and circumferentially within white pine (Pinus strobus L.) stems. We took wood samples at breast height, near branches, and at the top of the trees. We identified IADFs visually and measured their radial position within a ring as well as their circumferential arc in cross-sections. Intra-annual density fluctuations occurred in 22.2% of rings. The radial position of IADFs within a ring was remarkably consistent at roughly 80% of the total annual radial increment across heights, trees, and years of formation. The main factors affecting the likelihood of IADF occurrence were ring width, year of formation, and the interaction between the two. Being near branches or at the top of the tree slightly increased the probability of occurrence. Though the sample size was not large enough to provide conclusive results about the circumferential distribution of IADFs, our data suggest that the circumferential arc of the IADFs might be conserved throughout the stem. 
    more » « less
  4. null (Ed.)
    Abstract The compression behavior of osmium metal was investigated up to 280 GPa (volume compression V/Vo =0.725) under nonhydrostatic conditions at ambient temperature using angle dispersive axial x-ray diffraction (A-XRD) with a diamond anvil cell (DAC). In addition, shear strength of osmium was measured to 170 GPa using radial x-ray diffraction (R-XRD) technique in DAC. Both diffraction techniques in DAC employed platinum as an internal pressure standard. Density functional theory (DFT) calculations were also performed, and the computed lattice parameters and volumes under compression are in good agreement with the experiments. DFT predicts a monotonous increase in axial ratio (c/a) with pressure and the structural anomalies of less than 1 % in (c/a) ratio below 150 GPa were not reproduced in theoretical calculations and hydrostatic measurements. The measured value of shear strength of osmium (τ) approaches a limiting value of 6 GPa above a pressure of 50 GPa in contrast to theoretical predictions of 24 GPa and is likely due to imperfections in polycrystalline samples. DFT calculations also enable the studies of shear and tensile deformations. The theoretical ideal shear stress is found along the (001)[1-10] shear direction with the maximal shear stress ~24 GPa at critical strain ~0.13. 
    more » « less
  5. A silicified trunk,Zhuotingoxylon liaoiWan, Yang, Wang, Liu et Wang gen. et sp. nov., is described from the uppermost part of Guodikeng Formation in South Taodonggou section, Turpan–Hami Basin, Xinjiang Uygur Autonomous Region, northwestern China. It is characterized by a solid pith, endarch primary xylem and pycnoxylic wood. The pith is composed of parenchyma and sclereids. Radial walls of primary xylem tracheids have spiral and scalariform thickenings. Secondary xylem consists of thick‐walled tracheids and parenchymatous rays. Uniseriate rounded pits with oval apertures are distributed on radial tracheidal walls separately. Cell walls of rays are homogeneous and smooth. Rays are 1–10 cells high in tangential section. Cross‐field pits are cupressoid. There are 1–4 bordered pits with slit‐like to oval apertures in each cross‐field. Based on the anatomical features of the pith and xylems, it is proposed that the new stem has a coniferous affinity. The new fossil stem adds to the knowledge of vascular plant diversity close to the Permian–Triassic boundary. 
    more » « less