skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Discovery and potential ramifications of reduced iron-bearing nanoparticles—magnetite, wüstite, and zero-valent iron—in wildland–urban interface fire ashes
The increase in fires at the wildland–urban interface has raised concerns about the potential environmental impact of ash remaining after burning. Here, we examined the concentrations and speciation of iron-bearing nanoparticles in wildland–urban interface ash. Total iron concentrations in ash varied between 4 and 66 mg g −1 . Synchrotron X-ray absorption near-edge structure (XANES) spectroscopy of bulk ash samples was used to quantify the relative abundance of major Fe phases, which were corroborated by transmission electron microscopy measurements. Maghemite (γ-(Fe 3+ ) 2 O 3 ) and magnetite (γ-Fe 2+ (Fe 3+ ) 2 O 4 ) were detected in most ashes and accounted for 0–90 and 0–81% of the spectral weight, respectively. Ferrihydrite (amorphous Fe( iii )–hydroxide, (Fe 3+ ) 5 HO 8 ·4H 2 O), goethite (α-Fe 3+ OOH), and hematite (α-Fe 3+ 2 O 3 ) were identified less frequently in ashes than maghemite and magnetite and accounted for 0–65, 0–54, and 0–50% of spectral weight, respectively. Other iron phases identified in ashes include wüstite (Fe 2+ O), zerovalent iron, FeS, FeCl 2 , FeCl 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , and Fe(NO 3 ) 3 . Our findings demonstrate the impact of fires at the wildland–urban interface on iron speciation; that is, fires can convert iron oxides ( e.g. , maghemite, hematite, and goethite) to reduced iron phases such as magnetite, wüstite, and zerovalent iron. Magnetite concentrations ( e.g. , up to 25 mg g −1 ) decreased from black to gray to white ashes. Based on transmission electron microscopy (TEM) analyses, most of the magnetite nanoparticles were less than 500 nm in size, although larger particles were identified. Magnetite nanoparticles have been linked to neurodegenerative diseases as well as climate change. This study provides important information for understanding the potential environmental impacts of fires at the wildland–urban interface, which are currently poorly understood.  more » « less
Award ID(s):
2101904 2101983
PAR ID:
10398289
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Nano
Volume:
9
Issue:
11
ISSN:
2051-8153
Page Range / eLocation ID:
4136 to 4149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Heterogeneous ice nucleation is a common process in the atmosphere, but relatively little is known about the role of different surface characteristics on the promotion of ice nucleation. We have used a series of iron oxides as a model system to study the role of lattice mismatch and defects induced by milling on ice nucleation activity. The iron oxides include wüstite (FeO), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and goethite (FeOOH). The iron oxides were characterized by X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurements. The immersion freezing experiments were performed using an environmental chamber. Wüstite (FeO) had the highest ice nucleation activity, which we attribute to its low lattice mismatch with hexagonal ice and the exposure of Fe–OH after milling. A comparison study of MnO and wüstite (FeO) with milled and sieved samples for each suggests that physical defects alone result in only a slight increase in ice nucleation activity. Despite differences in the molecular formula and surface groups, hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and goethite (FeOOH) had similar ice nucleation activities, which may be attributed to their high lattice mismatch to hexagonal ice. This study provides further insight into the characteristics of a good heterogeneous ice nucleus and, more generally, helps to elucidate the interactions between aerosol particles and ice particles in clouds. 
    more » « less
  2. Abstract

    Iron oxide nanoparticles (IONPs) have garnered significant attention as a promising platform for reactive oxygen species (ROS)‐dependent disease treatment, owing to their remarkable biocompatibility and Fenton catalytic activity. However, the low catalytic activity of IONPs is a major hurdle in their clinical translation. To overcome this challenge, IONPs of different compositions are examined for their Fenton reaction under pharmacologically relevant conditions. The results show that wüstite (FeO) nanoparticles exhibit higher catalytic activity than magnetite (Fe3O4) or maghemite (γ‐Fe2O3) of matched size and coating, despite having a similar surface oxidation state. Further analyses suggest that the high catalytic activity of wüstite nanoparticles can be attributed to the presence of internal low‐valence iron (Fe0and Fe2+), which accelerates the recycling of surface Fe3+to Fe2+through intraparticle electron transport. Additionally, ultrasmall wüstite nanoparticles are generated by tuning the thermodecomposition‐based nanocrystal synthesis, resulting in a Fenton reaction rate 5.3 times higher than that of ferumoxytol, an FDA‐approved IONP. Compared with ferumoxytol, wüstite nanoparticles substantially increase the level of intracellular ROS in mouse mammary carcinoma cells. This study presents a novel mechanism and pivotal improvement for the development of highly efficient ROS‐inducing nanozymes, thereby expanding the horizons for their therapeutic applications.

     
    more » « less
  3. Abstract

    The use of transmission electron microscopy (TEM) to observe real-time structural and compositional changes has proven to be a valuable tool for understanding the dynamic behavior of nanomaterials. However, identifying the nanoparticles of interest typically require an obvious change in position, size, or structure, as compositional changes may not be noticeable during the experiment. Oxidation or reduction can often result in subtle volume changes only, so elucidating mechanisms in real-time requires atomic-scale resolution orin-situelectron energy loss spectroscopy, which may not be widely accessible. Here, by monitoring the evolution of diffraction contrast, we can observe both structural and compositional changes in iron oxide nanoparticles, specifically the oxidation from a wüstite-magnetite (FeO@Fe3O4) coreshell nanoparticle to single crystalline magnetite, Fe3O4nanoparticle. Thein-situTEM images reveal a distinctive light and dark contrast known as the ‘Ashby-Brown contrast’, which is a result of coherent strain across the coreshell interface. As the nanoparticles fully oxidize to Fe3O4, the diffraction contrast evolves and then disappears completely, which is then confirmed by modeling and simulation of TEM images. This represents a new, simplified approach to tracking the oxidation or reduction mechanisms of nanoparticles usingin-situTEM experiments.

     
    more » « less
  4. We present a method for thephotochemical conversion of the inverse spinel iron oxides in which the mixed-valent magnetite phase (Fe 3 O 4 ) is accessed from the maghemite phase (γ-Fe 2 O 3 ) via a stable, colloidal nanocrystal-to-nanocrystal transformation. Anaerobic UV-irradiation of colloidal γ-Fe 2 O 3 nanocrystals in the presence of ethanol as a sacrificial reductant yields reduction of some Fe 3+ to Fe 2+ , resulting in a topotactic reduction of γ-Fe 2 O 3 to Fe 3 O 4 . This reduction is evidenced by the emergence of charge-transfer absorption and increased d -spacing in UV-irradiated nanocrystals. Redox titrations reveal that ∼43% of Fe in < d > = 4.8 nm nanocrystals can be reduced with this method and comparison of optical data indicates similar reduction levels in < d > = 7.3 and 9.0 nm nanocrystals. Addition of excess acetaldehyde during photoreduction shows that the extent of reduction is likely pinned by the hydrogenation of acetaldehyde back to ethanol and can be increased with the use of an alkylborohydride sacrificial reductant. Photochemical reduction is accompanied by increased magnetization and emergence of magnetic features characteristic of Fe 3 O 4 . Overall, this work provides a reversible, post-synthetic strategy to obtain Fe 3 O 4 nanocrystals with well-controlled Fe 2+ compositions. 
    more » « less
  5. Abstract

    Atmospheric iron solubility varies depending on whether the particles are collected in rural or urban areas, with urban areas showing increased iron solubility. In this study, we investigate if the iron species present in different environments affects its ultimate solubility. Field data are presented from the Platte River Air Pollution and Photochemistry Experiment (PRAPPE), aimed at understanding the interactions between organic carbon and trace elements in atmospheric particulate matter (PM). 24‐hr PM2.5samples were collected during the summer and winter (2016–2017), at three different sites on the Eastern Colorado plains: an urban, agricultural, and a mixed site. Downtown Denver had an average total and water‐soluble iron air concentration of 181.2 and 7.7 ng m−3, respectively. Platteville, the mixed site, had an average of total iron of 76.1 ng m−3, with average water‐soluble iron concentration of 9.1 ng m−3. Jackson State Park (rural/agricultural) had the lowest total iron average of 31.5 ng m−3and the lowest water‐soluble iron average, 1.3 ng m−3. The iron oxidation state and chemical speciation of 97 samples across all sites and seasons was probed by X‐ray absorption near edge structure (XANES) spectroscopy. The most common iron phases observed were almandine (Fe₃Al₂Si₃O₁₂) (Denver 21%, Platteville 16%, Jackson 24%), magnetite (Fe3O4) (Denver 9%, Platteville 4%, Jackson 5%) and Fe (III)dextran (Denver 5%, Platteville 13%, Jackson 5%), a surrogate for Fe‐organic complexes. Additionally, native iron [Fe(0)] was found in significant amounts at all sites. No correlation was observed between iron solubility and iron oxidation state or chemical speciation.

     
    more » « less