skip to main content


Title: A Multiwavelength Study of Active Galactic Nuclei in Post-merger Remnants
Abstract

We investigate the role of galaxy mergers in triggering active galactic nuclei (AGN) in the nearby universe. Our analysis is based on a sample of 79 post-merger remnant galaxies with deep X-ray observations from Chandra/XMM-Newton capable of detecting a low-luminosity AGN of ≥1040.5erg s−1. This sample is derived from a visually classified, volume-limited sample of 807 post-mergers identified in the Sloan Digital Sky Survey Data Release 14 with logM*/M≥ 10.5 and 0.02 ≤z≤ 0.06. We find that the X-ray AGN fraction in this sample is 55.7% ± 5.6% compared to 23.6% ± 2.8% for a mass- and redshift-matched noninteracting control sample. The multiwavelength AGN fraction (identified as an AGN in one of X-ray, IR, radio or optical diagnostics) for post-mergers is 76.6% ± 4.8% compared to 39.1% ± 3.2% for controls. Thus post-mergers exhibit a high overall AGN fraction with an excess between 2 and 4 depending on the AGN diagnostics used. In addition, we find most optical, IR, and radio AGN are also identified as X-ray AGN while a large fraction of X-ray AGN are not identified in any other diagnostic. This highlights the importance of deep X-ray imaging to identify AGN. We find that the X-ray AGN fraction of post-mergers is independent of the stellar mass above logM*/M≥ 10.5 unlike the trend seen in control galaxies. Overall, our results show that post-merger galaxies are a good tracer of the merger–AGN connection and strongly support the theoretical expectations that mergers trigger AGN.

 
more » « less
NSF-PAR ID:
10398380
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
944
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 168
Size(s):
["Article No. 168"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here.

     
    more » « less
  2. ABSTRACT

    The kinematic disturbances associated with major galaxy mergers are known to produce gas inflows, which in turn may trigger accretion onto the supermassive black holes (SMBH) of the participant galaxies. While this effect has been studied in galaxy pairs, the frequency of active galactic nuclei (AGNs) in fully coalesced post-merger systems is poorly constrained due to the limited size or impurity of extant post-merger samples. Previously, we combined convolutional neural network (CNN) predictions with visual classifications to identify a highly pure sample of 699 post-mergers in deep r-band imaging. In the work presented here, we quantify the frequency of AGNs in this sample using three metrics: optical emission lines, mid-infrared (mid-IR) colour, and radio detection of low-excitation radio galaxies (LERGs). We also compare the frequency of AGNs in post-mergers to that in a sample of spectroscopically identified galaxy pairs. We find that AGNs identified by narrow-line optical emission and mid-IR colour have an increased incidence rate in post-mergers, with excesses of ~4 over mass- and redshift-matched controls. The optical and mid-IR AGN excesses in post-mergers exceed the values found for galaxy pairs, indicating that AGN activity in mergers peaks after coalescence. Conversely, we recover no significant excess of LERGs in post-mergers or pairs. Finally, we find that the [O iii] luminosity (a proxy for SMBH accretion rate) in post-mergers that host an optical AGN is ~0.3 dex higher on average than in non-interacting galaxies with an optical AGN, suggesting that mergers generate higher accretion rates than secular triggering mechanisms.

     
    more » « less
  3. Abstract Galaxy mergers are predicted to trigger accretion onto the central supermassive black holes, with the highest rates occurring during final coalescence. Previously, we have shown elevated rates of both optical and mid-IR selected active galactic nuclei (AGN) in post-mergers, but to date the prevalence of X-ray AGN has not been examined in the same systematic way. We present XMM-Newton data of 43 post-merger galaxies selected from the Sloan Digital Sky Survey along with 430 non-interacting control galaxies matched in stellar mass, redshift, and environment in order to test for an excess of hard X-ray (2–10 keV) emission in post-mergers attributable to triggered AGN. We find 2 X-ray detections in the post-mergers ($4.7^{+9.3}_{-3.8}\%$) and 9 in the controls ($2.1^{+1.5}_{-1.0}\%$), an excess of $2.22^{+4.44}_{-2.22}$, where the confidence intervals are 90%. While we therefore do not find statistically significant evidence for an X-ray AGN excess in post-mergers (p = 0.26), we find a factor of ∼17 excess of mid-IR AGN in our sample, consistent with past work and inconsistent with the observed X-ray excess (p = 2.7 × 10−4). Dominant, luminous AGN are therefore more frequent in post-mergers, and the lack of a comparable excess of 2–10 keV X-ray AGN suggests that AGN in post-mergers are more likely to be heavily obscured. Our results are consistent with the post-merger stage being characterised by enhanced AGN fueling, heavy AGN obscuration, and more intrinsically luminous AGN, in line with theoretical predictions. 
    more » « less
  4. ABSTRACT

    Supermassive black holes require a reservoir of cold gas at the centre of their host galaxy in order to accrete and shine as active galactic nuclei (AGN). Major mergers have the ability to drive gas rapidly inwards, but observations trying to link mergers with AGN have found mixed results due to the difficulty of consistently identifying galaxy mergers in surveys. This study applies deep learning to this problem, using convolutional neural networks trained to identify simulated post-merger galaxies from survey-realistic imaging. This provides a fast and repeatable alternative to human visual inspection. Using this tool, we examine a sample of ∼8500 Seyfert 2 galaxies ($L[\mathrm{O\, {\small III}}] \sim 10^{38.5 - 42}$ erg s−1) at z < 0.3 in the Sloan Digital Sky Survey and find a merger fraction of $2.19_{-0.17}^{+0.21}$ per cent compared with inactive control galaxies, in which we find a merger fraction of $2.96_{-0.20}^{+0.26}$ per cent, indicating an overall lack of mergers among AGN hosts compared with controls. However, matching the controls to the AGN hosts in stellar mass and star formation rate reveals that AGN hosts in the star-forming blue cloud exhibit a ∼2 × merger enhancement over controls, while those in the quiescent red sequence have significantly lower relative merger fractions, leading to the observed overall deficit due to the differing M*–SFR distributions. We conclude that while mergers are not the dominant trigger of all low-luminosity, obscured AGN activity in the nearby Universe, they are more important to AGN fuelling in galaxies with higher cold gas mass fractions as traced through star formation.

     
    more » « less
  5. Abstract

    We present visual classifications of merger-induced tidal disturbances in 143M*∼ 1011Mpost-starburst galaxies atz∼ 0.7 identified in theSQuIGGLESample. This sample spectroscopically selects galaxies from the Sloan Digital Sky Survey that have stopped their primary epoch of star formation within the past ∼500 Myr. Visual classifications are performed on Hyper Suprime-Cam imaging. We compare to a control sample of mass- and redshift-matched star-forming and quiescent galaxies from the Large Early Galaxy Census and find that post-starburst galaxies are more likely to be classified as disturbed than either category. This corresponds to a factor of3.61.3+2.9times the disturbance rate of older quiescent galaxies and2.1.73+1.9times the disturbance rate of star-forming galaxies. Assuming tidal features persist for ≲500 Myr, this suggests merging is coincident with quenching in a significant fraction of these post-starbursts. Galaxies with tidal disturbances are younger on average than undisturbed post-starburst galaxies in our sample, suggesting tidal features from a major merger may have faded over time. This may be exacerbated by the fact that, on average, the undisturbed subset is fainter, rendering low-surface-brightness tidal features harder to identify. However, the presence of 10 young (≲150 Myr since quenching) undisturbed galaxies suggests that major mergers are not the only fast physical mechanism that shut down the primary epoch of star formation in massive galaxies at intermediate redshift.

     
    more » « less