skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond Antiresorptive Activity: Risedronate-Based Coordination Complexes To Potentially Treat Osteolytic Metastases
Coordination of clinically employed bisphosphonate, risedronate (RISE), to bioactive metals, Ca2+, Mg2+, and Zn2+, allowed the formation of bisphosphonate-based coordination complexes (BPCCs). Three RISE-based BPCCs, RISE-Ca, RISEMg, and RISE-Zn, were produced, and their structures were elucidated by single crystal X-ray difraction. Interestingly, the addition of an auxiliary ligand, etidronic acid (HEDP), resulted in the recrystallized protonated form of the ligand, H-RISE. The pH-dependent structural stability of the RISE-based BPCCs was measured by means of dissolution profles under neutral and acidic simulated physiological conditions (PBS and FaSSGF, respectively). In comparison to RISE (Actonel), the complexes showed a lower equilibrium solubility (∼70−85% in 18−24 h) in PBS, while a higher equilibrium solubility (∼100% in 3 h) in acidic media. The results point to the capacity to release this BP in a pH-dependent manner from the RISE-based BPCCs. Subsequently, the particle size of RISE-Ca was reduced, from 300 μm to ∼350 d.nm, employing the phase inversion temperature (PIT)-nanoemulsion method, resulting in nano-Ca@RISE. Aggregation measurements of nano-Ca@RISE in 1% fetal bovine serum (FBS):H2O was monitored after 24, 48, and 72 h to study the particle size longevity in physiological media, showing that the suspended material has the potential to maintain its particle size over time. Furthermore, binding assays were performed to determine the potential binding of nano-Ca@RISE to the bone, where results show higher binding (~1.7×) for the material to hydroxyapatite (HA, 30%) when compared to RISE (17%) in 1 d. The cytotoxicity efects of nano-Ca@RISE were compared to those of RISE against the human breast cancer MDA-MB-231 and normal osteoblast-like hFOB 1.19 cell lines by dose−response curves and relative cell viability assays in an in vitro setting. The results demonstrate that nano-Ca@RISE signifcantly decreases the viability of MDA-MB-231 with high specifcity, at concentrations ∼2−3× lower than the ones reported employing other third-generation BPs. This is supported by the fact that when normal osteoblast cells (hFOB 1.19), which are part of the tissue microenvironment at metastatic sites, were treated with nano-Ca@RISE no signifcant decrease in viability was observed. This study expands on the therapeutic potential of RISE beyond its antiresorptive activity through the design of BPCCs, specifcally nano-Ca@RISE, that bind to the bone and degrade in a pH-dependent manner under acidic conditions  more » « less
Award ID(s):
1757365
PAR ID:
10398422
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Bio Materials
ISSN:
2576-6422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement—an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration. 
    more » « less
  2. The role of radiation-induced bystander effects in radiation therapy remains unclear. With renewed interest in therapy with alpha-particle emitters, and their potential for sterilizing disseminated tumor cells (DTCs), it is critical to determine the contribution of bystander effects to the overall response so they can be leveraged for maximum clinical benefit. Methods: Female Foxn1(nu) athymic nude mice were administered 0, 50, or 600 kBq/kg (RaCl2)-Ra-223 to create bystander conditions. At 24 hours after administration, MDA-MB-231 or MCF-7 human breast cancer cells expressing luciferase were injected into the tibial marrow compartment. Tumor burden was tracked weekly via bioluminescence. Results: The MDA-MB-231 xenografts were observed to have a 10-day growth delay in the 600 kBq/kg treatment group only. In contrast, MCF-7 cells had 7-and 65-day growth delays in the 50 and 600 kBq/kg groups, respectively. Histologic imaging of the tibial marrow compartment, alpha-camera imaging, and Monte Carlo dosimetry modeling revealed DTCs both within and beyond the range of the alpha-particles emitted from Ra-223 in bone for both MCF-7 and MDA-MB-231 cells. Conclusion: Taken together, these results support the participation of Ra-22(3)-induced antiproliferative/cytotoxic bystander effects in delayed growth of DTC xenografts. They indicate that the delay depends on the injected activity and therefore is dose-dependent. They suggest using (RaCl2)-Ra-223 as an adjuvant treatment for select patients at early stages of breast cancer. 
    more » « less
  3. Abstract P‐glycoprotein (P‐gp, ABCB1) is a well‐researched ATP‐binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P‐gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non‐toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub‐cytotoxic photodynamic therapy process, can inhibit P‐gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL‐MDA‐MB‐231) and chemosensitive (MDA‐MB‐231) triple‐negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P‐gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL‐MDA‐MB‐231 cells, but not in chemosensitive MDA‐MB‐231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P‐gp in VBL‐MDA‐MB‐231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P‐gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR. 
    more » « less
  4. The hydrolysis–condensation reaction of TiO 2 was adapted to the phase inversion temperature (PIT)-nano-emulsion method as a low energy approach to gain control over the size and phase purity of the resulting metal oxide particles. Three different PIT-nano-emulsion syntheses were designed, each one intended to isolate high purity rutile, anatase, and brookite phase particles. Three different emulsion systems were prepared, with a pH of either strongly acidic (H 2 O : HNO 3 , pH ∼0.5), moderately acidic (H 2 O : isopropanol, pH ∼4.5), or alkaline (H 2 O : NaOH, pH ∼12). PIT-nano-emulsion syntheses of the amorphous TiO 2 particles were conducted under these conditions, resulting in average particle diameter distributions of ∼140 d nm (strongly acidic), ∼60 d nm (moderately acidic), and ∼460 d nm (alkaline). Different thermal treatments were performed on the amorphous particles obtained from the PIT-nano-emulsion syntheses. Raman spectroscopy and powder X-ray diffraction (PXRD) were employed to corroborate that the thermally treated particles under H 2 O : HNO 3 (at 850 °C), H 2 O : NaOH (at 400 °C), and H 2 O : isopropanol (at 200 °C) yielded highly-pure rutile, anatase, and brookite phases, respectively. Herein, an experimental approach based on the PIT-nano-emulsion method is demonstrated to synthesize phase-controlled TiO 2 particles with high purity employing fewer toxic compounds, reducing the quantity of starting materials, and with a minimum energy input, particularly for the almost elusive brookite phase. 
    more » « less
  5. Bone is primarily composed of collagen and apatite, two materials which exhibit a high sensitivity to pH dysregulation. As a result, acid exposure of bone, both clinically and in the laboratory is expected to cause compositional and mechanical changes to the tissue. Clinically, Metabolic acidosis (MA), a condition characterized by a reduced physiological pH, has been shown to have negative implications on bone health, including a decrease in bone mineral density and volume as well as increased fracture risk. The addition of bone-like apatite to ionic solutions such as phosphate buffered saline (PBS) and media has been shown to acidify the solution leading to bone acid exposure. Therefore, is it essential to understand how reduced pH physiochemically affects bone composition and in turn its mechanical properties. This study investigates the specific changes in bone due to physiochemical dissolution in acid. Excised murine bones were placed in PBS solutions at different pHs: a homeostatic pH level (pH 7.4), an acidosis equivalent (pH 7.0), and an extreme acidic solution (pH 5.5). After 5 days, the bones were removed from the solutions and characterized to determine compositional and material changes. We found that bones, without cells, were able to regulate pH via buffering, leading to a decrease in bone mineral content and an increase in collagen denaturation. Both of these compositional changes contributed to an increase in bone toughness by creating a more ductile bone surface and preventing crack propagation. Therefore, we conclude that the skeletal systems' physiochemical response to acid exposure includes multifaceted and spatially variable compositional changes that affect bone mechanics. 
    more » « less