skip to main content


Title: Chromatin condensation regulates endothelial cell adaptation to shear stress
Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.  more » « less
Award ID(s):
1653299 2246970
NSF-PAR ID:
10398427
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Discher, Dennis
Date Published:
Journal Name:
Molecular Biology of the Cell
Volume:
33
Issue:
11
ISSN:
1059-1524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The two main blood flow patterns, namely, pulsatile shear (PS) prevalent in straight segments of arteries and oscillatory shear (OS) observed at branch points, are associated with atheroprotective (healthy) and atheroprone (unhealthy) vascular phenotypes, respectively. The effects of blood flow-induced shear stress on endothelial cells (ECs) and vascular health have generally been studied using human umbilical vein endothelial cells (HUVECs). While there are a few studies comparing the differential roles of PS and OS across different types of ECs at a single time point, there is a paucity of studies comparing the temporal responses between different EC types. In the current study, we measured OS and PS transcriptomic responses in human aortic endothelial cells (HAECs) over 24 h and compared these temporal responses of HAECs with our previous findings on HUVECs. The measurements were made at 1, 4, and 24 h in order to capture the responses at early, mid, and late time points after shearing. The results indicate that the responses of HAECs and HUVECs are qualitatively similar for endothelial function-relevant genes and several important pathways with a few exceptions, thus demonstrating that HUVECs can be used as a model to investigate the effects of shear on arterial ECs, with consideration of the differences. Our findings show that HAECs exhibit an earlier response or faster kinetics as compared to HUVECs. The comparative analysis of HAECs and HUVECs presented here offers insights into the mechanisms of common and disparate shear stress responses across these two major endothelial cell types.

     
    more » « less
  2. Abstract

    Endothelial cells (ECs) are key players in the development and maintenance of the vascular tree, the establishment of the blood–brain barrier and control of blood flow. Disruption in ECs is an early and active component of vascular pathogenesis. However, our ability to selectively target ECs in the CNS for identification and manipulation is limited. Here, in the mouse retina, a tractable model of the CNS, we utilized a recently developed AAV‐BR1 system to identify distinct classes of ECs along the vascular tree using a GFP reporter. We then developed an inducible EC‐specific ectopic Connexin 43 (Cx43) expression system using AAV‐BR1‐CAG‐DIO‐Cx43‐P2A‐DsRed2 in combination with a mouse line carrying inducible CreERT2 in ECs. We targeted Cx43 because its loss has been implicated in microvascular impairment in numerous diseases such as diabetic retinopathy and vascular edema. GFP‐labeled ECs were numerous, evenly distributed along the vascular tree and their morphology was polarized with respect to the direction of blood flow. After tamoxifen induction, ectopic Cx43 was specifically expressed in ECs. Similarly to endogenous Cx43, ectopic Cx43 was localized at the membrane contacts of ECs and it did not affect tight junction proteins. The ability to enhance gap junctions in ECs provides a precise and potentially powerful tool to treat microcirculation deficits, an early pathology in numerous diseases.

     
    more » « less
  3. Epigenetic regulatory mechanisms are increasingly recognized as crucial determinants of cellular specification and differentiation. During muscle cell differentiation (myogenesis), extensive remodelling of histone acetylation and methylation occurs. Several of these histone modifications aid in the expression of muscle‐specific genes and the silencing of genes that block lineage commitment. Therefore, the identification of new epigenetic regulatory mechanisms is of high interest. Still, the functional relevance of numerous histone modifications during myogenesis remain completely uncertain. In this study, we focus on the function of H3K36me3 and its epigenetic writer, SET domain containing 2 (SETD2), in the context of muscle cell differentiation. We first observed that SETD2 expression increases during myogenesis. Targeted depletion of SETD2 in undifferentiated (myoblasts) and differentiated (myotubes) muscle cells reduced H3K36me3 levels and induced profound changes in gene expression and slight alterations in alternative splicing, as determined by deep RNA‐sequencing analysis. Enzymes that function in metabolic pathways were upregulated in response to SETD2 depletion. Furthermore, we demonstrated that upregulation of several glycolytic enzymes was associated with an increase in intracellular pyruvate levels in SETD2‐depleted cells, indicating a novel role for SETD2 in metabolic programming during myogenesis. Together, our results provide new insight into the signalling pathways controlled by chromatin‐modifying enzymes and their associated histone modifications during muscle cell differentiation.

     
    more » « less
  4. null (Ed.)
    Type-II diabetes (T2D) patients affected by underlying hyperglycemic (high glucose/blood sugar) conditions often suffer from cardiac atrophy, resulting in tissue mass reduction and debilitating cardiac health. To understand pathophysiological mechanisms during progression of cardiac atrophy, a 3D bioprinted organoid platform was developed from a mixture of hydrogels containing human cardiac cells, including cardiomyocytes (CM), fibroblasts (CF) and endothelial cells (EC), to mimic the functionality of the in-vivo tissue. The organoids were cultured using normoglycemic- or hyperglycemic-conditions. The expression of essential biomarkers in these organoids, for myocardin (Myocd), troponin-I (TRP-I), fibroblast protein-1 (FSP-1) and endothelin-1 (ET-1) was confirmed. To assess the physiological cellular connections during hyperglycemia, the presence of Connexin-43 (CX-43) was assessed in the presence of a CX-43 blocker, gap26. Epigenomic tools were used to simultaneously interrogate histone-modifications by histone 3 lysine 9 mono-methylation (H3K9me1) along with the co-regulation of inflammatory mediators, such as the high mobility group box 1 (HMGB1) and toll like receptor 4 (TLR4) in the cardiac organoids cultured using normal versus hyperglycemic conditions. Organoids exposed to high glucose showed an increased expression of H3K9me1 as well as inflammatory mediators HMGB1 and TLR4. Hyperglycemia also exhibited alterations in expression of Myocd and FSP-1 in the organoids, compared to normoglycemic conditions. Treatment with gap26 affected the CX-43 expression significantly, in organoids cultured under hyperglycemia suggesting that high glucose conditions associated with prolonged diabetes may lead to compromised CM-CF coupling, essential for maintenance of cardiac functionality. Increased levels of H3K9me1 suggest decreased expression of Myocd, which may lead to CM degeneration. Epigenetic modifications including alterations in histone methylation in regulation of the myocardial genes and gap junction proteins under hyperglycemic conditions, may lead to cardiac atrophy. We expect to establish an actual T2D patient iPSC cell derived cardiac platform, to offer new therapeutic opportunities within the field. 
    more » « less
  5. Vascular endothelial cells (ECs) sense and respond to hemodynamic forces such as pulsatile shear stress (PS) and oscillatory shear stress (OS). Among the metabolic pathways, glycolysis is differentially regulated by atheroprone OS and atheroprotective PS. Studying the molecular mechanisms by which PS suppresses glycolytic flux at the epigenetic, transcriptomic, and kinomic levels, we have demonstrated that glucokinase regulatory protein (GCKR) was markedly induced by PS in vitro and in vivo, although PS down-regulates other glycolysis enzymes such as hexokinase (HK1). Using next-generation sequencing data, we identified the binding of PS-induced Krüppel-like factor 4 (KLF4), which functions as a pioneer transcription factor, binding to the GCKR promoter to change the chromatin structure for transactivation of GCKR. At the posttranslational level, PS-activated AMP-activated protein kinase (AMPK) phosphorylates GCKR at Ser-481, thereby enhancing the interaction between GCKR and HK1 in ECs. In vivo, the level of phosphorylated GCKR Ser-481 and the interaction between GCKR and HK1 were increased in the thoracic aorta of wild-type AMPKα2+/+mice in comparison with littermates with EC ablation of AMPKα2 (AMPKα2−/−). In addition, the level of GCKR was elevated in the aortas of mice with a high level of voluntary wheel running. The underlying mechanisms for the PS induction of GCKR involve regulation at the epigenetic level by KLF4 and at the posttranslational level by AMPK.

     
    more » « less