skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States
In recent decades, wildfires in many areas of the United States (U.S.) have become larger and more frequent with increasing anthropogenic pressure, including interactions between climate, land-use change, and human ignitions. We aimed to characterize the spatiotemporal patterns of contemporary fire characteristics across the contiguous United States (CONUS). We derived fire variables based on frequency, fire radiative power (FRP), event size, burned area, and season length from satellite-derived fire products and a government records database on a 50 km grid (1984–2020). We used k-means clustering to create a hierarchical classification scheme of areas with relatively homogeneous fire characteristics, or modern ‘pyromes,’ and report on the model with eight major pyromes. Human ignition pressure provides a key explanation for the East-West patterns of fire characteristics. Human-dominated pyromes (85% mean anthropogenic ignitions), with moderate fire size, area burned, and intensity, covered 59% of CONUS, primarily in the East and East Central. Physically dominated pyromes (47% mean anthropogenic ignitions) characterized by relatively large (average 439 mean annual ha per 50 km pixel) and intense (average 75 mean annual megawatts/pixel) fires occurred in 14% of CONUS, primarily in the West and West Central. The percent of anthropogenic ignitions increased over time in all pyromes (0.5–1.7% annually). Higher fire frequency was related to smaller events and lower FRP, and these relationships were moderated by vegetation, climate, and ignition type. Notably, a spatial mismatch between our derived modern pyromes and both ecoregions and historical fire regimes suggests other major drivers for modern U.S. fire patterns than vegetation-based classification systems. This effort to delineate modern U.S. pyromes based on fire observations provides a national-scale framework of contemporary fire regions and may help elucidate patterns of change in an uncertain future.  more » « less
Award ID(s):
1846384 1757324
PAR ID:
10398483
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Fire
Volume:
5
Issue:
4
ISSN:
2571-6255
Page Range / eLocation ID:
95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liu, Junguo (Ed.)
    Abstract Structure loss is an acute, costly impact of the wildfire crisis in the western conterminous United States (“West”), motivating the need to understand recent trends and causes. We document a 246% rise in West-wide structure loss from wildfires between 1999–2009 and 2010–2020, driven strongly by events in 2017, 2018, and 2020. Increased structure loss was not due to increased area burned alone. Wildfires became significantly more destructive, with a 160% higher structure-loss rate (loss/kha burned) over the past decade. Structure loss was driven primarily by wildfires from unplanned human-related ignitions (e.g. backyard burning, power lines, etc.), which accounted for 76% of all structure loss and resulted in 10 times more structures destroyed per unit area burned compared with lightning-ignited fires. Annual structure loss was well explained by area burned from human-related ignitions, while decadal structure loss was explained by state-level structure abundance in flammable vegetation. Both predictors increased over recent decades and likely interacted with increased fuel aridity to drive structure-loss trends. While states are diverse in patterns and trends, nearly all experienced more burning from human-related ignitions and/or higher structure-loss rates, particularly California, Washington, and Oregon. Our findings highlight how fire regimes—characteristics of fire over space and time—are fundamentally social-ecological phenomena. By resolving the diversity of Western fire regimes, our work informs regionally appropriate mitigation and adaptation strategies. With millions of structures with high fire risk, reducing human-related ignitions and rethinking how we build are critical for preventing future wildfire disasters. 
    more » « less
  2. Abstract Increasing fire activity and the associated degradation in air quality in the United States has been indirectly linked to human activity via climate change. In addition, direct attribution of fires to human activities may provide opportunities for near term smoke mitigation by focusing policy, management, and funding efforts on particular ignition sources. We analyze how fires associated with human ignitions (agricultural fires and human-initiated wildfires) impact fire particulate matter under 2.5µm (PM2.5) concentrations in the contiguous United States (CONUS) from 2003 to 2018. We find that these agricultural and human-initiated wildfires dominate fire PM2.5in both a high fire and human ignition year (2018) and low fire and human ignition year (2003). Smoke from these human levers also makes meaningful contributions to total PM2.5(∼5%–10% in 2003 and 2018). Across CONUS, these two human ignition processes account for more than 80% of the population-weighted exposure and premature deaths associated with fire PM2.5. These findings indicate that a large portion of the smoke exposure and impacts in CONUS are from fires ignited by human activities with large mitigation potential that could be the focus of future management choices and policymaking. 
    more » « less
  3. Abstract. The annual area burned due to wildfires in the western United States (WUS) increased bymore than 300 % between 1984 and 2020. However, accounting for the nonlinear, spatially heterogeneous interactions between climate, vegetation, and human predictors driving the trends in fire frequency and sizes at different spatial scales remains a challenging problem for statistical fire models. Here we introduce a novel stochastic machine learning (SML) framework, SMLFire1.0, to model observed fire frequencies and sizes in 12 km × 12 km grid cells across the WUS. This framework is implemented using mixture density networks trained on a wide suite of input predictors. The modeled WUS fire frequency matches observations at both monthly (r=0.94) and annual (r=0.85) timescales, as do the monthly (r=0.90) and annual (r=0.88) area burned. Moreover, the modeled annual time series of both fire variables exhibit strong correlations (r≥0.6) with observations in 16 out of 18 ecoregions. Our ML model captures the interannual variability and the distinct multidecade increases in annual area burned for both forested and non-forested ecoregions. Evaluating predictor importance with Shapley additive explanations, we find that fire-month vapor pressure deficit (VPD) is the dominant driver of fire frequencies and sizes across the WUS, followed by 1000 h dead fuel moisture (FM1000), total monthly precipitation (Prec), mean daily maximum temperature (Tmax), and fraction of grassland cover in a grid cell. Our findings serve as a promising use case of ML techniques for wildfire prediction in particular and extreme event modeling more broadly. They also highlight the power of ML-driven parameterizations for potential implementation in fire modules of dynamic global vegetation models (DGVMs) and earth system models (ESMs). 
    more » « less
  4. Abstract The area burned in the western United States during the 2020 fire season was the greatest in the modern era. Here we show that the number of human‐caused fires in 2020 also was elevated, nearly 20% higher than the 1992–2019 average. Although anomalously dry conditions enabled ignitions to spread and contributed to record area burned, these conditions alone do not explain the surge in the number of human‐caused ignitions. We argue that behavioral shifts aimed at curtailing the spread of COVID‐19 altered human‐environment interactions to favor increased ignitions. For example, the number of recreation‐caused wildfires during summer was 36% greater than the 1992–2019 average; this increase was likely a function of increased outdoor recreational activity in response to social distancing measures. We hypothesize that the combination of anomalously dry conditions and COVID‐19 social disruptions contributed to widespread increases in human‐caused ignitions, adding complexity to fire management efforts during the 2020 western US fire season. Knowledge of how social behavior changes indirectly contributed to the increased number of ignitions in the 2020 wildfire season can help inform resource management in an increasingly flammable world. 
    more » « less
  5. Abstract Increasing area burned across western North America raises questions about the precedence and magnitude of changes in fire activity, relative to the historical range of variability (HRV) that ecosystems experienced over recent centuries and millennia. Paleoecological records of past fire occurrence provide context for contemporary changes in ecosystems characterized by infrequent, high-severity fire regimes. Here we present a network of 12 fire-history records derived from macroscopic charcoal preserved in sediments of small subalpine lakes within a c. 10 000 km2landscape in the U.S. northern Rocky Mountains (Northern Rockies). We used this network to characterize landscape-scale burning over the past 2500 yr, and to evaluate the precedence of widespread regional burning experienced in the early 20th and 21st centuries. We further compare the Northern Rockies fire history to a previously published network of fire-history records in the Southern Rockies. In Northern Rockies subalpine forests, widespread fire activity was strongly linked to seasonal climate conditions, in contemporary, historical, and paleo records. The average estimated fire rotation period (FRP) over the past 2500 yr was 164 yr (HRV: 127–225 yr), while the contemporary FRP from 1900 to 2021 CE was 215 yr. Thus, extensive regional burning in the early 20th century (e.g. 1910 CE) and in recent decades remains within the HRV of recent millennia. Results from the Northern Rockies contrast with the Southern Rockies, which burned with less frequency on average over the past 2500 yr, and where 21st-century burning has exceeded the HRV. Our results support expectations that Northern Rockies fire activity will continue to increase with climatic warming, surpassing historical burning if more than one exceptional fire year akin to 1910 occurs within the next several decades. The ecological consequences of climatic warming in subalpine forests will depend, in large part, on the magnitude of fire-regime changes relative to the past. 
    more » « less