skip to main content


Title: Neutrino transport in general relativistic neutron star merger simulations
Abstract

Numerical simulations of neutron star–neutron star and neutron star–black hole binaries play an important role in our ability to model gravitational-wave and electromagnetic signals powered by these systems. These simulations have to take into account a wide range of physical processes including general relativity, magnetohydrodynamics, and neutrino radiation transport. The latter is particularly important in order to understand the properties of the matter ejected by many mergers, the optical/infrared signals powered by nuclear reactions in the ejecta, and the contribution of that ejecta to astrophysical nucleosynthesis. However, accurate evolutions of the neutrino transport equations that include all relevant physical processes remain beyond our current reach. In this review, I will discuss the current state of neutrino modeling in general relativistic simulations of neutron star mergers and of their post-merger remnants. I will focus on the three main types of algorithms used in simulations so far: leakage, moments, and Monte-Carlo scheme. I will review the advantages and limitations of each scheme, as well as the various neutrino–matter interactions that should be included in simulations. We will see that the quality of the treatment of neutrinos in merger simulations has greatly increased over the last decade, but also that many potentially important interactions remain difficult to take into account in simulations (pair annihilation, oscillations, inelastic scattering).

 
more » « less
NSF-PAR ID:
10398547
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Living Reviews in Computational Astrophysics
Volume:
9
Issue:
1
ISSN:
2365-0524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present a new moment-based energy-integrated neutrino transport code for neutron star merger simulations in general relativity. In the merger context, ours is the first code to include Doppler effects at all orders in υ/c, retaining all non-linear neutrino–matter coupling terms. The code is validated with a stringent series of tests. We show that the inclusion of full neutrino–matter coupling terms is necessary to correctly capture the trapping of neutrinos in relativistically moving media, such as in differentially rotating merger remnants. We perform preliminary simulations proving the robustness of the scheme in simulating ab-initio mergers to black hole collapse and long-term neutron star remnants up to ${\sim }70\,$ ms. The latter is the longest dynamical space-time, 3D, general relativistic simulations with full neutrino transport to date. We compare results obtained at different resolutions and using two different closures for the moment scheme. We do not find evidences of significant out-of-thermodynamic equilibrium effects, such as bulk viscosity, on the post-merger dynamics or gravitational wave emission. Neutrino luminosities and average energies are in good agreement with theory expectations and previous simulations by other groups using similar schemes. We compare dynamical and early wind ejecta properties obtained with M1 and with our older neutrino treatment. We find that the M1 results have systematically larger proton fractions. However, the differences in the nucleosynthesis yields are modest. This work sets the basis for future detailed studies spanning a wider set of neutrino reactions, binaries, and equations of state.

     
    more » « less
  2. Abstract

    We present a 3D general-relativistic magnetohydrodynamic simulation of a short-lived neutron star remnant formed in the aftermath of a binary neutron star merger. The simulation uses an M1 neutrino transport scheme to track neutrino–matter interactions and is well suited to studying the resulting nucleosynthesis and kilonova emission. A magnetized wind is driven from the remnant and ejects neutron-rich material at a quasi-steady-state rate of 0.8 × 10−1Ms−1. We find that the ejecta in our simulations underproducer-process abundances beyond the secondr-process peak. For sufficiently long-lived remnants, these outflowsalonecan produce blue kilonovae, including the blue kilonova component observed for AT2017gfo.

     
    more » « less
  3. ABSTRACT We present a systematic numerical relativity study of the impact of different physics input and grid resolution in binary neutron star mergers. We compare simulations employing a neutrino leakage scheme, leakage plus M0 scheme, the M1 transport scheme, and pure hydrodynamics. Additionally, we examine the effect of a sub-grid scheme for turbulent viscosity. We find that the overall dynamics and thermodynamics of the remnant core are robust, implying that the maximum remnant density could be inferred from gravitational wave observations. Black hole collapse instead depends significantly on viscosity and grid resolution. Differently from recent work, we identify possible signatures of neutrino effects in the gravitational waves only at the highest resolutions considered; new high-resolution simulations will be thus required to build accurate gravitational wave templates to observe these effects. Different neutrino transport schemes impact significantly mass, geometry, and composition of the remnant’s disc and ejecta; M1 simulations show systematically larger proton fractions, reaching maximum values larger than 0.4. r-process nucleosynthesis yields reflect the different ejecta compositions; they are in agreement and reproduce residual solar abundances only if M0 or M1 neutrino transport schemes are adopted. We compute kilonova light curves using spherically-symmetric radiation-hydrodynamics evolutions up to 15 d post-merger, finding that they are mostly sensitive to the ejecta mass and electron fraction; accounting for multiple ejecta components appears necessary for reliable light curve predictions. We conclude that advanced neutrino schemes and resolutions higher than current standards are essential for robust long-term evolutions and detailed astrophysical predictions. 
    more » « less
  4. Abstract

    Neutrinos are copiously emitted by neutron star mergers, due to the high temperatures reached by dense matter during the merger and its aftermath. Neutrinos influence the merger dynamics and shape the properties of the ejecta, including the resultingr-process nucleosynthesis and kilonova emission. In this work, we analyse neutrino emission from a large sample of binary neutron star merger simulations in Numerical Relativity, covering a broad range of initial masses, nuclear equation of state and viscosity treatments. We extract neutrino luminosities and mean energies, and compute quantities of interest such as the peak values, peak broadnesses, time averages and decrease time scales. We provide a systematic description of such quantities, including their dependence on the initial parameters of the system. We find that for equal-mass systems the total neutrino luminosity (several$$10^{53}{\hbox {erg}~{\hbox {s}}^{-1}}$$1053ergs-1) decreases as the reduced tidal deformability increases, as a consequence of the less violent merger dynamics. Similarly, tidal disruption in asymmetric mergers leads to systematically smaller luminosities. Peak luminosities can be twice as large as the average ones. Electron antineutrino luminosities dominate (initially by a factor of 2-3) over electron neutrino ones, while electron neutrinos and heavy flavour neutrinos have similar luminosities. Mean energies are nearly constant in time and independent on the binary parameters. Their values reflect the different decoupling temperature inside the merger remnant. Despite present uncertainties in neutrino modelling, our results provide a broad and physically grounded characterisation of neutrino emission, and they can serve as a reference point to develop more sophisticated neutrino transport schemes.

     
    more » « less
  5. Abstract We investigate prospects for the detection of high-energy neutrinos produced in the prolonged jets of short gamma-ray bursts (sGRBs). The X-ray light curves of sGRBs show extended emission components lasting for 100–1000 s, which are considered to be produced by prolonged engine activity. Jets produced by such activity should interact with photons in the cocoon formed by the propagation of the jet inside the ejecta of neutron star mergers. We calculate neutrino emission from jets produced by prolonged engine activity, taking account of the interaction between photons provided from the cocoon and cosmic rays accelerated in the jets. We find that IceCube-Gen2, a future neutrino telescope, with second-generation gravitational-wave detectors will probably be able to observe neutrino signals associated with gravitational waves with around 10 years of operation, regardless of the assumed value of the Lorentz factor of the jets. Neutrino observations may enable us to constrain the dissipation region of the jets. We apply this model to GRB 211211A, a peculiar long GRB whose origin may be a binary neutron star merger. Our model predicts that IceCube is unlikely to detect any associated neutrinos, but a few similar events will be able to put a meaningful constraint on the physical quantities of the prolonged engine activities. 
    more » « less