ABSTRACT We conducted a GPU-accelerated reprocessing of $$\sim 87~{{\ \rm per\ cent}}$$ of the archival data from the High Time Resolution Universe South Low Latitude (HTRU-S LowLat) pulsar survey by implementing a pulsar search pipeline that was previously used to reprocess the Parkes Multibeam Pulsar Survey (PMPS). We coherently searched the full 72-min observations of the survey with an acceleration search range up to $$|50|\, \rm m\, s^{-2}$$, which is most sensitive to binary pulsars experiencing nearly constant acceleration during 72 min of their orbital period. Here we report the discovery of 71 pulsars, including six millisecond pulsars, of which five are in binary systems, and seven pulsars with very high dispersion measures (DM $$\gt 800 \, \rm pc \, cm^{-3}$$). These pulsar discoveries largely arose by folding candidates to a much lower spectral signal-to-noise ratio than in previous surveys and by exploiting the coherence of folding over the incoherent summing of the Fourier components to discover new pulsars as well as candidate classification techniques. We show that these pulsars could be fainter and on average more distant as compared with both the previously reported 100 HTRU-S LowLat pulsars and the background pulsar population in the survey region. We have assessed the effectiveness of our search method and the overall pulsar yield of the survey. We show that through this reprocessing we have achieved the expected survey goals, including the predicted number of pulsars in the survey region, and discuss the major causes why these pulsars were missed in previous processing of the survey.
more »
« less
Bits Missing: Finding Exotic Pulsars Using bfloat16 on NVIDIA GPUs
Abstract The Fourier domain acceleration search (FDAS) is an effective technique for detecting faint binary pulsars in large radio astronomy data sets. This paper quantifies the sensitivity impact of reducing numerical precision in the graphics processing unit (GPU)-accelerated FDAS pipeline of the AstroAccelerate (AA) software package. The prior implementation used IEEE-754 single-precision in the entire binary pulsar detection pipeline, spending a large fraction of the runtime computing GPU-accelerated fast Fourier transforms. AA has been modified to use bfloat16 (and IEEE-754 double-precision to provide a “gold standard” comparison) within the Fourier domain convolution section of the FDAS routine. Approximately 20,000 synthetic pulsar filterbank files representing binary pulsars were generated using SIGPROC with a range of physical parameters. They have been processed using bfloat16, single-precision, and double-precision convolutions. All bfloat16 peaks are within 3% of the predicted signal-to-noise ratio of their corresponding single-precision peaks. Of 14,971 “bright” single-precision fundamental peaks above a power of 44.982 (our experimentally measured highest noise value), 14,602 (97.53%) have a peak in the same acceleration and frequency bin in the bfloat16 output plane, while in the remaining 369 the nearest peak is located in the adjacent acceleration bin. There is no bin drift measured between the single- and double-precision results. The bfloat16 version of FDAS achieves a speedup of approximately 1.6× compared to single-precision. A comparison between AA and the PRESTO software package is presented using observations collected with the GMRT of PSR J1544+4937, a 2.16 ms black widow pulsar in a 2.8 hr compact orbit.
more »
« less
- Award ID(s):
- 2020265
- PAR ID:
- 10398612
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 265
- Issue:
- 1
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 13
- Size(s):
- Article No. 13
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spider pulsars are compact binary systems composed of a millisecond pulsar and a low-mass companion. The relativistic magnetically dominated pulsar wind impacts onto the companion, ablating it and slowly consuming its atmosphere. The interaction forms an intrabinary shock, a proposed site of particle acceleration. We perform global fully kinetic particle-in-cell simulations of the intrabinary shock, assuming that the pulsar wind consists of plane-parallel stripes of alternating polarity and that the shock wraps around the companion. We find that particles are efficiently accelerated via shock-driven reconnection. We extract first-principles synchrotron spectra and light curves, which are in good agreement with X-ray observations: (1) the synchrotron spectrum is nearly flat,Fν∝ const; (2) when the pulsar spin axis is nearly aligned with the orbital angular momentum, the light curve displays two peaks, just before and after the pulsar eclipse (pulsar superior conjunction), separated in phase by ∼0.8 rad; (3) the peak flux exceeds the one at the inferior conjunction by a factor of 10.more » « less
-
Abstract We study sky maps and light curves of gamma-ray emission from neutron stars in compact binaries, and in isolation. We briefly review some gamma-ray emission models, and reproduce sky maps from a standard isolated pulsar in the Separatrix Layer model. We consider isolated pulsars with several variations of a dipole magnetic field, including superpositions, and predict their gamma-ray emission. Our results provide new heuristics on what can and cannot be inferred about the magnetic field configuration of pulsars from high-energy observations. We find that typical double-peak light curves can be produced by pulsars with significant multipole structure beyond a single dipole. For binary systems, we also present a simple approximation that is useful for rapid explorations of binary magnetic field structure. Finally, we predict the gamma-ray emission pattern from a compact black hole-neutron star binary moments before merger by applying the Separatrix Layer model to data simulated in full general relativity; we find that face-on observers receive little emission, equatorial observers see one broad peak, and more generic observers typically see two peaks.more » « less
-
ABSTRACT Spider pulsars are binary systems composed of a millisecond pulsar and a low-mass companion. Their X-ray emission, varying with orbital phase, originates from synchrotron radiation produced by high-energy electrons accelerated at the intrabinary shock. For fast-spinning pulsars in compact binary systems, the intrabinary shock emission occurs in the fast cooling regime. Using global 2D particle-in-cell simulations, we investigate the effect of synchrotron losses on the shock structure and the resulting emission, assuming that the pulsar wind is stronger than the companion wind (so, the shock wraps around the companion), as expected in black widows. We find that the shock opening angle gets narrower for greater losses; the light curve shows a more prominent double-peaked signature (with two peaks just before and after the pulsar eclipse) for stronger cooling; below the cooling frequency, the synchrotron spectrum displays a hard power-law range, consistent with X-ray observations.more » « less
-
ABSTRACT The HTRU-S Low Latitude survey data within 1° of the Galactic Centre (GC) were searched for pulsars using the Fast Folding Algorithm (FFA). Unlike traditional Fast Fourier Transform (FFT) pipelines, the FFA optimally folds the data for all possible periods over a given range, which is particularly advantageous for pulsars with low-duty cycles. For the first time, a search over acceleration was included in the FFA to improve its sensitivity to binary pulsars. The steps in dispersion measure (DM) and acceleration were optimized, resulting in a reduction of the number of trials by 86 per cent. This was achieved over a search period range from 0.6 to 432-s, i.e. 10 per cent of the observation time (4320s), with a maximum DM of 4000 pc cm−3 and an acceleration range of ±128 m s−2. The search resulted in the re-detections of four known pulsars, including a pulsar that was missed in the previous FFT processing of this survey. This result indicates that the FFA pipeline is more sensitive than the FFT pipeline used in the previous processing of the survey within our parameter range. Additionally, we discovered a 1.89-s pulsar, PSR J1746-2829, with a large DM, located 0.5 from the GC. Follow-up observations revealed that this pulsar has a relatively flat spectrum (α = −0.9 ± 0.1) and has a period derivative of ∼1.3 × 10−12 s s−1, implying a surface magnetic field of ∼5.2 × 1013 G and a characteristic age of ∼23 000 yr. While the period, spectral index, and surface magnetic field strength are similar to many radio magnetars, other characteristics such as high linear polarization are absent.more » « less
An official website of the United States government
