Because the average treatment effect (ATE) measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population. Assessing such risk is difficult, however, because any one individual treatment effect (ITE) is never observed, so the 10% worst-affected cannot be identified, whereas distributional treatment effects only compare the first deciles within each treatment group, which does not correspond to any 10% subpopulation. In this paper, we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution. We leverage the availability of pretreatment covariates and characterize the tightest possible upper and lower bounds on ITE-CVaR given by the covariate-conditional average treatment effect (CATE) function. We then proceed to study how to estimate these bounds efficiently from data and construct confidence intervals. This is challenging even in randomized experiments as it requires understanding the distribution of the unknown CATE function, which can be very complex if we use rich covariates to best control for heterogeneity. We develop a debiasing method that overcomes this and prove it enjoys favorable statistical properties even when CATE and other nuisances are estimated by black box machine learning or even inconsistently. Studying a hypothetical change to French job search counseling services, our bounds and inference demonstrate a small social benefit entails a negative impact on a substantial subpopulation. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the Division of Information and Intelligent Systems [Grant 1939704]. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4819 . 
                        more » 
                        « less   
                    
                            
                            Conformal Inference of Counterfactuals and Individual Treatment Effects
                        
                    
    
            Abstract Evaluating treatment effect heterogeneity widely informs treatment decision making. At the moment, much emphasis is placed on the estimation of the conditional average treatment effect via flexible machine learning algorithms. While these methods enjoy some theoretical appeal in terms of consistency and convergence rates, they generally perform poorly in terms of uncertainty quantification. This is troubling since assessing risk is crucial for reliable decision-making in sensitive and uncertain environments. In this work, we propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects under the potential outcome framework. For completely randomized or stratified randomized experiments with perfect compliance, the intervals have guaranteed average coverage in finite samples regardless of the unknown data generating mechanism. For randomized experiments with ignorable compliance and general observational studies obeying the strong ignorability assumption, the intervals satisfy a doubly robust property which states the following: the average coverage is approximately controlled if either the propensity score or the conditional quantiles of potential outcomes can be estimated accurately. Numerical studies on both synthetic and real data sets empirically demonstrate that existing methods suffer from a significant coverage deficit even in simple models. In contrast, our methods achieve the desired coverage with reasonably short intervals. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2032014
- PAR ID:
- 10398626
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B: Statistical Methodology
- Volume:
- 83
- Issue:
- 5
- ISSN:
- 1369-7412
- Format(s):
- Medium: X Size: p. 911-938
- Size(s):
- p. 911-938
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Randomized experiments have been the gold standard for drawing causal inference. The conventional model-based approach has been one of the most popular methods of analysing treatment effects from randomized experiments, which is often carried out through inference for certain model parameters. In this paper, we provide a systematic investigation of model-based analyses for treatment effects under the randomization-based inference framework. This framework does not impose any distributional assumptions on the outcomes, covariates and their dependence, and utilizes only randomization as the reasoned basis. We first derive the asymptotic theory for $ Z $-estimation in completely randomized experiments, and propose sandwich-type conservative covariance estimation. We then apply the developed theory to analyse both average and individual treatment effects in randomized experiments. For the average treatment effect, we consider model-based, model-imputed and model-assisted estimation strategies, where the first two strategies can be sensitive to model misspecification or require specific methods for parameter estimation. The model-assisted approach is robust to arbitrary model misspecification and always provides consistent average treatment effect estimation. We propose optimal ways to conduct model-assisted estimation using generally nonlinear least squares for parameter estimation. For the individual treatment effects, we propose directly modelling the relationship between individual effects and covariates, and discuss the model’s identifiability, inference and interpretation allowing for model misspecification.more » « less
- 
            Summary Modern empirical work in regression discontinuity (RD) designs often employs local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by construction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals in terms of coverage error. We establish valid coverage error expansions for RBC confidence interval estimators and use these results to propose new inference-optimal bandwidth choices for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point estimator is too large when the goal is to construct RBC confidence intervals with the smaller coverage error rate. We further optimize the constant terms behind the coverage error to derive new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions also establish that RBC inference yields higher-order refinements (relative to traditional undersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical findings are illustrated with a Monte Carlo experiment and an empirical application, and the main methodological results are available in R and Stata packages.more » « less
- 
            Contextual bandit algorithms are increasingly replacing non-adaptive A/B tests in e-commerce, healthcare, and policymaking because they can both improve outcomes for study participants and increase the chance of identifying good or even best policies. To support credible inference on novel interventions at the end of the study, nonetheless, we still want to construct valid confidence intervals on average treatment effects, subgroup effects, or value of new policies. The adaptive nature of the data collected by contextual bandit algorithms, however, makes this difficult: standard estimators are no longer asymptotically normally distributed and classic confidence intervals fail to provide correct coverage. While this has been addressed in non-contextual settings by using stabilized estimators, variance stabilized estimators in the contextual setting pose unique challenges that we tackle for the first time in this paper. We propose the Contextual Adaptive Doubly Robust (CADR) estimator, a novel estimator for policy value that is asymptotically normal under contextual adaptive data collection. The main technical challenge in constructing CADR is designing adaptive and consistent conditional standard deviation estimators for stabilization. Extensive numerical experiments using 57 OpenML datasets demonstrate that confidence intervals based on CADR uniquely provide correct coverage.more » « less
- 
            Abstract Randomization inference is a powerful tool in early phase vaccine trials when estimating the causal effect of a regimen against a placebo or another regimen. Randomization-based inference often focuses on testing either Fisher’s sharp null hypothesis of no treatment effect for any participant or Neyman’s weak null hypothesis of no sample average treatment effect. Many recent efforts have explored conducting exact randomization-based inference for other summaries of the treatment effect profile, for instance, quantiles of the treatment effect distribution function. In this article, we systematically review methods that conduct exact, randomization-based inference for quantiles of individual treatment effects (ITEs) and extend some results to a special case where naïve participants are expected not to exhibit responses to highly specific endpoints. These methods are suitable for completely randomized trials, stratified completely randomized trials, and a matched study comparing two non-randomized arms from possibly different trials. We evaluate the usefulness of these methods using synthetic data in simulation studies. Finally, we apply these methods to HIV Vaccine Trials Network Study 086 (HVTN 086) and HVTN 205 and showcase a wide range of application scenarios of the methods.Rcode that replicates all analyses in this article can be found in first author’s GitHub page athttps://github.com/Zhe-Chen-1999/ITE-Inference.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
