skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Inferential Wasserstein Generative Adversarial Networks
Abstract

Generative adversarial networks (GANs) have been impactful on many problems and applications but suffer from unstable training. The Wasserstein GAN (WGAN) leverages the Wasserstein distance to avoid the caveats in the minmax two-player training of GANs but has other defects such as mode collapse and lack of metric to detect the convergence. We introduce a novel inferential Wasserstein GAN (iWGAN) model, which is a principled framework to fuse autoencoders and WGANs. The iWGAN model jointly learns an encoder network and a generator network motivated by the iterative primal-dual optimization process. The encoder network maps the observed samples to the latent space and the generator network maps the samples from the latent space to the data space. We establish the generalization error bound of the iWGAN to theoretically justify its performance. We further provide a rigorous probabilistic interpretation of our model under the framework of maximum likelihood estimation. The iWGAN, with a clear stopping criteria, has many advantages over other autoencoder GANs. The empirical experiments show that the iWGAN greatly mitigates the symptom of mode collapse, speeds up the convergence, and is able to provide a measurement of quality check for each individual sample. We illustrate the ability of the iWGAN by obtaining competitive and stable performances for benchmark datasets.

 
more » « less
NSF-PAR ID:
10398641
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
84
Issue:
1
ISSN:
1369-7412
Format(s):
Medium: X Size: p. 83-113
Size(s):
["p. 83-113"]
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present a simple approach to train Generative Adversarial Networks (GANs) in order to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared to explicit models that are trained on tractable data likelihood. However, GANs overlook the explicit data density characteristics which leads to undesirable quantitative evaluations and mode collapse. To bridge this gap, we propose a hybrid generative adversarial network (HGAN) for which we can enforce data density estimation via an autoregressive model and support both adversarial and likelihood framework in a joint training manner which diversify the estimated density in order to cover different modes. We propose to use an adversarial network to transfer knowledge from an autoregressive model (teacher) to the generator (student) of a GAN model. A novel deep architecture within the GAN formulation is developed to adversarially distill the autoregressive model information in addition to simple GAN training approach. We conduct extensive experiments on real-world datasets (i.e., MNIST, CIFAR-10, STL-10) to demonstrate the effectiveness of the proposed HGAN under qualitative and quantitative evaluations. The experimental results show the superiority and competitiveness of our method compared to the baselines. 
    more » « less
  2. This paper introduces a novel generative encoder (GE) framework for generative imaging and image processing tasks like image reconstruction, compression, denoising, inpainting, deblurring, and super-resolution. GE unifies the generative capacity of GANs and the stability of AEs in an optimization framework instead of stacking GANs and AEs into a single network or combining their loss functions as in existing literature. GE provides a novel approach to visualizing relationships between latent spaces and the data space. The GE framework is made up of a pre-training phase and a solving phase. In the former, a GAN with generator \begin{document}$ G $\end{document} capturing the data distribution of a given image set, and an AE network with encoder \begin{document}$ E $\end{document} that compresses images following the estimated distribution by \begin{document}$ G $\end{document} are trained separately, resulting in two latent representations of the data, denoted as the generative and encoding latent space respectively. In the solving phase, given noisy image \begin{document}$ x = \mathcal{P}(x^*) $\end{document}, where \begin{document}$ x^* $\end{document} is the target unknown image, \begin{document}$ \mathcal{P} $\end{document} is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image \begin{document}$ x $\end{document} in the compressed domain, i.e., given \begin{document}$ m = E(x) $\end{document}, the two latent spaces are unified via solving the optimization problem

    and the image \begin{document}$ x^* $\end{document} is recovered in a generative way via \begin{document}$ \hat{x}: = G(z^*)\approx x^* $\end{document}, where \begin{document}$ \lambda>0 $\end{document} is a hyperparameter. The unification of the two spaces allows improved performance against corresponding GAN and AE networks while visualizing interesting properties in each latent space.

     
    more » « less
  3. Though generative adversarial networks (GANs) are prominent models to generate realistic and crisp images, they are unstable to train and suffer from the mode collapse problem. The problems of GANs come from approximating the intrinsic discontinuous distribution transform map with continuous DNNs. The recently proposed AE-OT model addresses the discontinuity problem by explicitly computing the discontinuous optimal transform map in the latent space of the autoencoder. Though have no mode collapse, the generated images by AE-OT are blurry. In this paper, we propose the AE-OT-GAN model to utilize the advantages of the both models: generate high quality images and at the same time overcome the mode collapse problems. Specifically, we firstly embed the low dimensional image manifold into the latent space by autoencoder (AE). Then the extended semi-discrete optimal transport (SDOT) map is used to generate new latent codes. Finally, our GAN model is trained to generate high quality images from the latent distribution induced by the extended SDOT map. The distribution transform map from this dataset related latent distribution to the data distribution will be continuous, and thus can be well approximated by the continuous DNNs. Additionally, the paired data between the latent codes and the real images gives us further restriction about the generator and stabilizes the training process. Experiments on simple MNIST dataset and complex datasets like CIFAR10 and CelebA show the advantages of the proposed method. 
    more » « less
  4. Abstract Objective

    Electronic medical records (EMRs) can support medical research and discovery, but privacy risks limit the sharing of such data on a wide scale. Various approaches have been developed to mitigate risk, including record simulation via generative adversarial networks (GANs). While showing promise in certain application domains, GANs lack a principled approach for EMR data that induces subpar simulation. In this article, we improve EMR simulation through a novel pipeline that (1) enhances the learning model, (2) incorporates evaluation criteria for data utility that informs learning, and (3) refines the training process.

    Materials and Methods

    We propose a new electronic health record generator using a GAN with a Wasserstein divergence and layer normalization techniques. We designed 2 utility measures to characterize similarity in the structural properties of real and simulated EMRs in the original and latent space, respectively. We applied a filtering strategy to enhance GAN training for low-prevalence clinical concepts. We evaluated the new and existing GANs with utility and privacy measures (membership and disclosure attacks) using billing codes from over 1 million EMRs at Vanderbilt University Medical Center.

    Results

    The proposed model outperformed the state-of-the-art approaches with significant improvement in retaining the nature of real records, including prediction performance and structural properties, without sacrificing privacy. Additionally, the filtering strategy achieved higher utility when the EMR training dataset was small.

    Conclusions

    These findings illustrate that EMR simulation through GANs can be substantially improved through more appropriate training, modeling, and evaluation criteria.

     
    more » « less
  5. This paper addresses the mode collapse for generative adversarial networks (GANs). We view modes as a geometric structure of data distribution in a metric space. Under this geometric lens, we embed subsamples of the dataset from an arbitrary metric space into the L2 space, while preserving their pairwise distance distribution. Not only does this metric embedding determine the dimensionality of the latent space automatically, it also enables us to construct a mixture of Gaussians to draw latent space random vectors. We use the Gaussian mixture model in tandem with a simple augmentation of the objective function to train GANs. Every major step of our method is supported by theoretical analysis, and our experiments on real and synthetic data confirm that the generator is able to produce samples spreading over most of the modes while avoiding unwanted samples, outperforming several recent GAN variants on a number of metrics and offering new features. 
    more » « less