skip to main content


Title: Inference of the Timescale‐Dependent Apparent Viscosity Structure in the Upper Mantle Beneath Greenland
Abstract

Contemporary crustal uplift and relative sea level (RSL) change in Greenland is caused by the response of the solid Earth to ongoing and historical ice mass change. Glacial isostatic adjustment (GIA) models, which seek to match patterns of land surface displacement and RSL change, typically employ a linear Maxwell viscoelastic model for the Earth's mantle. In Greenland, however, upper mantle viscosities inferred from ice load changes and other geophysical phenomena occurring over a range of timescales vary by up to two orders of magnitude. Here, we use full‐spectrum rheological models to examine the influence of transient deformation within the Greenland upper mantle, which may account for these differing viscosity estimates. We use observations of shear wave velocity combined with constitutive rheological models to self‐consistently calculate mechanical properties including the apparent upper mantle viscosity and lithosphere thickness across a broad spectrum of frequencies. We find that the contribution of transient behavior is most significant over loading timescales of 102–103 years, which corresponds to the timeframe of ice mass loss over recent centuries. Predicted apparent lithosphere thicknesses are also in good agreement with inferences made across seismic, GIA, and flexural timescales. Our results indicate that full‐spectrum constitutive models that more fully capture broadband mantle relaxation provide a means of reconciling seemingly contradictory estimates of Greenland's upper mantle viscosity and lithosphere thickness made from observations spanning a range of timescales.

 
more » « less
NSF-PAR ID:
10398791
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
4
Issue:
2
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Determining the thickness of the lithosphere in any given setting combines uncertainty in both the observational method and laboratory‐derived understanding of mantle rheology. The many observational and modeling criteria across geophysical subfields for plate thickness lead to significant differences in plate thickness estimates depending on the process of interest, be it seismic wave propagation or relaxation in response to changes in loads—from earthquakes, ice sheets to volcanoes—or convection. This paper proposes a framework in which to model and interpret upper mantle mechanical structure smoothly across the full spectrum of geophysical timescales. We integrate viscous, elastic, and linear anelastic constitutive models and calculate the mechanical response from convective to seismic wave timescales (i.e., 0 to infinite frequency or, in practice,10−15to 1 Hz). We apply these calculations to 1‐D thermal structures and determine the normalized complex viscosity, a quantity that shows clearly the role of transient creep in weakening rock relative to the associated Maxwell rheology. Using various criteria for the lithosphere‐asthenosphere boundary, we show that the apparent plate thickness will be thicker at higher frequencies than at lower frequencies. Additional calculations for nonlinear Maxwell behavior (dislocation mechanisms) demonstrate significant changes in the apparent plate structure, decreasing the long‐term plate thickness, consistent with observations. Other effects such as dislocation damping (associated with a steady‐state dislocation structure), melt, water, major element composition, and grain size are not included here but, when incorporated into this framework, will significantly change the full‐spectrum plate thickness predictions.

     
    more » « less
  2. SUMMARY

    The possibility of a transient rheological response to ice age loading, first discussed in the literature of the 1980s, has received renewed attention. Transient behaviour across centennial to millennial timescales has been invoked to reconcile apparently contradictory inferences of steady-state (Maxwell) viscosity based on two distinct data sets from Greenland: Holocene sea-level curves and Global Navigation Satellite System (GNSS) derived modern crustal uplift data. To revisit this issue, we first compute depth-dependent Fréchet kernels using 1-D Maxwell viscoelastic Earth models and demonstrate that the mantle resolving power of the two Greenland data sets is highly distinct, reflecting the differing spatial scale of the associated surface loading: the sea-level records are sensitive to viscosity structure across the entire upper mantle while uplift rates associated with post-1000 CE fluctuations of the Greenland Ice Sheet have a dominant sensitivity to shallow asthenosphere viscosity. Guided by these results, we present forward models which demonstrate that a moderate low viscosity zone beneath the lithosphere in Maxwell Earth models provides a simple route to simultaneously reconciling both data sets by significantly increasing predictions of present-day uplift rates in Greenland whilst having negligible impact on predictions of Holocene relative sea-level curves from the region. Our analysis does not rule out the possibility of transient deformation, but it suggests that it is not required to simultaneously explain these two data sets. A definitive demonstration of transient behaviour requires that one account for the resolving power of the data sets in modelling the glacial isostatic adjustment process.

     
    more » « less
  3. SUMMARY

    Earth structure beneath the Antarctic exerts an important control on the evolution of the ice sheet. A range of geological and geophysical data sets indicate that this structure is complex, with the western sector characterized by a lithosphere of thickness ∼50–100 km and viscosities within the upper mantle that vary by 2–3 orders of magnitude. Recent analyses of uplift rates estimated using Global Navigation Satellite System (GNSS) observations have inferred 1-D viscosity profiles below West Antarctica discretized into a small set of layers within the upper mantle using forward modelling of glacial isostatic adjustment (GIA). It remains unclear, however, what these 1-D viscosity models represent in an area with complex 3-D mantle structure, and over what geographic length-scale they are applicable. Here, we explore this issue by repeating the same modelling procedure but applied to synthetic uplift rates computed using a realistic model of 3-D viscoelastic Earth structure inferred from seismic tomographic imaging of the region, a finite volume treatment of GIA that captures this complexity, and a loading history of Antarctic ice mass changes inferred over the period 1992–2017. We find differences of up to an order of magnitude between the best-fitting 1-D inferences and regionally averaged depth profiles through the 3-D viscosity field used to generate the synthetics. Additional calculations suggest that this level of disagreement is not systematically improved if one increases the number of observation sites adopted in the analysis. Moreover, the 1-D models inferred from such a procedure are non-unique, that is a broad range of viscosity profiles fit the synthetic uplift rates equally well as a consequence, in part, of correlations between the viscosity values within each layer. While the uplift rate at each GNSS site is sensitive to a unique subspace of the complex, 3-D viscosity field, additional analyses based on rates from subsets of proximal sites showed no consistent improvement in the level of bias in the 1-D inference. We also conclude that the broad, regional-scale uplift field generated with the 3-D model is poorly represented by a prediction based on the best-fitting 1-D Earth model. Future work analysing GNSS data should be extended to include horizontal rates and move towards inversions for 3-D structure that reflect the intrinsic 3-D resolving power of the data.

     
    more » « less
  4. Abstract

    Marinoan snowball Earth offers us a set of sedimentary and geochemical records for exploring glacial isostatic adjustment (GIA) associated with one of the most severe glaciations in Earth history. An accurate prediction of GIA‐based relative sea level (RSL) change associated with a snowball Earth meltdown will help to explore sedimentary records for RSL changes and to place independent constraints on mantle viscosity and on the durations of syndeglaciation (Td) and cap carbonate deposition. Here we mainly examine postdeglacial RSL change characterized by an RSL drop and a resumed transgression inferred from the cap dolostones on the continental shelf in south China. Such a nonmonotonic RSL behavior may be a diagnostic GIA signal for the Marinoan deglaciation resulting from a significantly longer postdeglacial GIA response than that for the last deglaciation. A postdeglacial RSL drop followed by transgression in south China, which is significantly affected by Earth's rotation, is predicted over the continental shelf for models withTd≤ 20 kyr and a deep mantle viscosity of ~5 × 1022Pa s regardless of the upper mantle viscosity. The inferred GIA model also explains the postdeglacial RSL changes such as sedimentary‐inferred RSL drops on the continental shelf in northwestern Canada and California at low‐latitude regions insignificantly affected by Earth's rotation. Furthermore, the good match between the predicted and observed RSL changes in south China suggests an approximate duration of ~50 kyr for the Marinoan17O depletion event, an atmospheric event linked to the post‐Marinoan drawdown of CO2and the concurrent rise of O2.

     
    more » « less
  5. Abstract

    Previous studies of flexure in continental settings assert that the elastic thickness of a multilayer lithosphere is controlled by the mechanically competent layer thicknesses only, following a cubic rule. More specifically, the cubic rule statesTe = (Te13+Te23+ … Ten3)1/3, whereTeis the total elastic thickness, andTeiis the elastic thickness of each competent layer. However, it is not necessarily clear thatTeshould be insensitive to the properties of intermediate weak layers (e.g., a weak lower crust) which may act to decouple the surface load from lower competent layers. To test this idea, we formulate 2D viscoelastic loading models with layered viscosity to compute the fully dynamic, time‐dependent response of a multilayer lithosphere with a weak lower crust. Results show that the flexural response of a multilayer lithosphere to a surface load is initially consistent with the cubic rule. However, this solution is transient because the stress associated with the load cannot be transmitted through the weak lower crust on long timescales. Stress in the mantle lithosphere relaxes with time and eventually does not support the load at all due to the decoupling effect of flow in the weak lower crust. The steady state flexure of a multilayer lithosphere is controlled solely by the mechanically competent upper crust such thatTe = Te1, and this new rule is the major finding of this study. Our new findings now explain small estimates ofTein continental settings with thick mantle lithosphere such as the Northern Tien Shan, which previously, were poorly explained by the cubic rule.

     
    more » « less