skip to main content


Title: A CCD search for variable stars in the open cluster NGC 6611
ABSTRACT

We present the results of the UBVIC variability survey in the young open cluster NGC 6611 based on observations obtained during 34 nights spanning one year. In total, we found 95 variable stars. Most of these stars are classified as periodic and irregular pre-main sequence (PMS) stars. The analysis of the JHKS 2MASS photometry and four-colour IRAC photometry revealed 165 Class II young stellar sources, 20 of which are irregular variables and one is an eclipsing binary. These classifications, complemented by JHK UKIDSS photometry and riHα VPHAS photometry, were used to identify 24 candidates for classical T Tauri stars and 30 weak-lined T Tauri stars. In addition to the PMS variables, we discovered eight δ Scuti candidates. None of these were previously known. Furthermore, we detected 17 eclipsing binaries where two were previously known. Based on the proper motions provided by the Gaia EDR3 catalogue, we calculated the cluster membership probabilities for 91 variable stars. For 61 variables, a probability higher than 80 per cent was determined, which makes them cluster members. Only 25 variables with a probability less than 20 per cent were regarded to be non-members.

 
more » « less
NSF-PAR ID:
10398816
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5487-5505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present stellar variability towards the young open cluster NGC 6823. Time series V- and I-band CCD photometry led to identification and characterization of 88 variable stars, of which only 14 have been previously recognized. We ascertain the membership of each variable with optical UBVI and infrared photometry, and with Gaia EDR3 parallax and proper motion data. Seventy two variable stars are found to be cluster members, of which 25 are main sequence stars and 48 are pre-main-sequence stars. The probable cluster members collectively suggest an isochrone age of the cluster to be about 2 Myrs based on the GAIA photometry. With the colour and magnitude, as well as the shape of the light curve, we have classified the main sequence variables into β Cep, δ Scuti, slowly pulsating B type, and new class variables. Among the pre-main-sequence variables, eight are classical T Tauri variables, and four are Herbig Ae/Be objects, whereas the remaining belong to the weak-lined T Tauri population. The variable nature of 32 stars is validated with TESS light curves. Our work provides refined classification of variability of pre-main-sequence and main-sequence cluster members of the active star-forming complex, Sharpless 86. Despite no strong evidence of the disc-locking mechanism in the present sample of TTSs, one TTS with larger Δ(I − K) is found to be a slow rotator.

     
    more » « less
  2. ABSTRACT

    Using the Las Cumbres Observatory Global Telescope Network (LCOGT), we have obtained multi-epoch photometry of the young cluster Mon R2. We have monitored over 6000 sources with i-band between 13 and 23 mag within a 26 × 26 arcmin2 field of view. For each star, we collected ∼1500 photometric points covering a temporal window of 23 d. Based on these data, we have measured rotation-modulated of 136 stars and identified around 90 additional variables, including 14 eclipsing binary candidates. Moreover, we found 298 other variables with photometric high-scatter. In addition, we have obtained r-band and Hα narrow-band photometry of the cluster with LCOGT and low-resolution optical spectroscopy of 229 stars with GMOS-Gemini. We used the Gaia data from the periodic stars and objects with Hα or IR-excesses, which are mostly low-mass pre-main sequence stars (<1 M⊙) in the cluster to estimate the distance (825 ± 51 pc) and the mean proper motions (μαcos(δ) = −2.75 mas yr−1 and μδ = 1.15 mas yr−1) of its members. This allows us to use the Gaia data to identify additional Mon R2 member candidates. We also used Pan-STARRS photometry from our LCOGT sources to construct a more precise H-R diagram, from which we estimate the mean age of the cluster and identify other possible members including eleven spectroscopy brown dwarf with M7 to M9 GMOS spectral types. Finally, we combined our membership lists with Spitzer infrared photometry to investigate the incidence of stars with discs and the effect these have on stellar rotation.

     
    more » « less
  3. ABSTRACT

    Westerlund 1 (Wd 1) is one of the most relevant star clusters in the Milky Way to study massive star formation, although it is still poorly known. Here, we used photometric and spectroscopic data to model the eclipsing binary W36, showing that its spectral type is O6.5 III  +  O9.5 IV, hotter and more luminous than thought before. Its distance dW36 = 4.03 ± 0.25 kpc agrees, within the errors, with three recent Gaia-EDR3-based distances reported in Paper I, Beasor & Davies, and by Negueruela’s group. However, they follow different approaches to fix the zero-points for red sources such as those in Wd 1, and to select the best approach, we used an accurate modelling of W36. The weighted mean distance of our parallax (Paper I) and binary distances results in dwd1 = 4.05 ± 0.20 kpc, with an unprecedented accuracy of 5 per cent. We adopted isochrones based on the Geneva code with supersolar abundances to infer the age of W36B as 6.4 ± 0.7 Myr. This object seems to be part of the prolific star formation burst represented by OB giants and supergiants that occurred at 7.1 ± 0.5 Myr ago, which coincides with the recently published PMS isochrone with age 7.2 Myr. Other BA-type luminous evolved stars and yellow hypergiants spread in the age range of 8–11 Myr. The four red supergiants discussed in paper I represent the oldest population of the cluster with an age of 10.7 ± 1 Myr. The multiple episodes of star formation in Wd 1 are reminiscent of that reported for the R136/30 Dor LMC cluster.

     
    more » « less
  4. ABSTRACT Studies of T Tauri discs inform planet formation theory; observations of variability due to occultation by circumstellar dust are a useful probe of unresolved, planet-forming inner discs, especially around faint M dwarf stars. We report observations of 2M0632, an M dwarf member of the Carina young moving group that was observed by Transiting Exoplanet Survey Satellite over two 1-yr intervals. The combined light curve contains >300 dimming events, each lasting a few hours, and as deep as 40 per cent (0.55 magnitudes). These stochastic events are correlated with a distinct, stable 1.86-d periodic signal that could be stellar rotation. Concurrent ground-based, multiband photometry show reddening consistent with interstellar medium-like dust. The star’s excess emission in the infrared and emission lines in optical and infrared spectra reveal a T Tauri-like accretion disc around the star. We confirm membership of 2M0632 in the Carina group by a Bayesian analysis of its Galactic space motion and position. We combine stellar evolution models with Gaia photometry and constraints on Teff, luminosity, and the absence of detectable lithium in the photosphere to constrain the age of the group and 2M0632 to 40–60 Myr, consistent with earlier estimates. 2M0632 joins a handful of long-lived discs which challenge the canon that disc lifetimes are ≲10 Myr. All known examples surround M dwarfs, suggesting that lower X-ray/ultraviolet irradiation and slower photoevaporation by these stars can dramatically affect disc evolution. The multiplanet systems spawned by long-lived discs probably experienced significant orbital damping and migration into close-in, resonant orbits, and perhaps represented by the TRAPPIST-1 system. 
    more » « less
  5. Abstract

    Interpreting the short-timescale variability of the accreting, young, low-mass stars known as Classical T Tauri stars remains an open task. Month-long, continuous light curves from the Transiting Exoplanet Survey Satellite (TESS) have become available for hundreds of T Tauri stars. With this vast data set, identifying connections between the variability observed by TESS and short-timescale accretion variability is valuable for characterizing the accretion process. To this end, we obtained short-cadence TESS observations of 14 T Tauri stars in the Taurus star formation region along with simultaneous ground-based,UBVRI-band photometry to be used as accretion diagnostics. In addition, we combine our data set with previously published simultaneous near-UV–near-IR Hubble Space Telescope spectra for one member of the sample. We find evidence that much of the short-timescale variability observed in the TESS light curves can be attributed to changes in the accretion rate, but note significant scatter between separate nights and objects. We identify hints of time lags within our data set that increase at shorter wavelengths, which we suggest may be evidence of longitudinal density stratification of the accretion column. Our results highlight that contemporaneous, multiwavelength observations remain critical for providing context for the observed variability of these stars.

     
    more » « less