skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Assessment of Impaired Finger Independence of Stroke Survivors: A Preliminary study
Hand impairment is prevalent in individuals after stroke. Regaining independent finger control is especially challenging. An objective and continuous assessment of finger impairment could inform clinicians and allow them to prescribe targeted therapies. The objective of this preliminary work was to quantify the neuromuscular factors that contribute to impairment in independent finger control in chronic stroke survivors. We obtained high-density electromyographic (HD-EMG) signals of extrinsic finger muscles and fingertip forces, while stroke or control participants were instructed to produce independent finger forces. We observed an impaired ability to isolate individual muscle compartment activation (i.e., co-activation of muscle compartment). This muscle co-activation pattern correlated with finger independence as well as clinical assessment scales on hand impairment. Our preliminary work showed that HD-EMG recordings can be used to continuously monitor activation abnormalities of small finger muscles in contribution to impaired finger independence. With further development, the outcomes can provide a basis for clinical decision making to reduce hand impairments of stroke survivors.  more » « less
Award ID(s):
1847319
PAR ID:
10398823
Author(s) / Creator(s):
Date Published:
Journal Name:
11th International IEEE EMBS Conference on Neural Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuromuscular electrical stimulation (NMES) targeting the muscle belly is commonly used to restore muscle strength in individuals with neurological disorders. However, early onset of muscle fatigue is a major limiting factor. Transcutaneous nerve stimulation (TNS) can delay muscle fatigue compared with traditional NMES techniques. However, the recruitment of Ia afferent fibers has not be specifically targeted to maximize muscle activation through the reflex pathway, which can lead to more orderly recruitment of motor units, further delaying fatigue. This preliminary study assessed the distribution of M-wave and H-reflex of intrinsic and extrinsic finger muscles. TNS was delivered using an electrode array placed along the medial side of the upper arm. Selective electrode pairs targeted the median and ulnar nerves innervating the finger flexors. High-density electromyography (HD EMG) was utilized to quantify the spatial distribution of the elicited activation of finger intrinsic and extrinsic muscles along the hand and forearm. The spatial patterns were characterized through isolation of the M-wave and H-reflex across various stimulation levels and EMG channels. Our preliminary results showed that, by altering the stimulation amplitude, distinct M-wave and H-reflex responses were evoked across EMG channels. In addition, distinct stimulation locations appeared to result in varied levels of reflex recruitment. Our findings indicate that it is possible to adjust stimulation parameters to maximize reflex activation, which can potentially facilitate physiological recruitment order of motoneurons. 
    more » « less
  2. The gait patterns of stroke survivors become slow and metabolically inefficient as a result of muscle weakness and low weight-bearing capacity. Exoskeletons and assistive robots can improve gait kinematics and energetics. However, the use of these powered devices may cause a reliance on the device itself that results in limited lasting improvement of the paretic leg function. Specifically, there exists a need to strengthen and train the response of weak ankle muscles, such as the soleus muscle, in stroke survivors. Impaired activation of the soleus muscle induces unnatural gait kinematics and reduced propulsion. The mechanical modulation of the soleus muscle can improve its loading response and enhance gait performance after a stroke. This paper develops a closed-loop feedback controller to manipulate the ankle joint dynamics to mechanically control the soleus muscle response using a motorized ankle orthosis. The control method is inspired by backstepping control techniques and developed to connect the ankle joint angular velocity and the soleus muscle response during the stance phase of walking. The tracking objective is quantified using an integral-like muscle error between the desired soleus response and the actual muscle response, which is measurable using surface electromyography (EMG). The closed-loop electric motor controller is designed to apply ankle perturbations exploiting the backstepping error and an adaptive control term to cope with uncertain parameters that satisfy the linear-in-the-parameters property. A switching signal is developed using heel and toe ground reaction forces to strategically perturb the ankle and target the soleus muscle loading response in real-time during the mid-late stance phase of walking. A Lyapunov-based stability analysis is used to guarantee a globally uniformly ultimately bounded (GUUB) tracking result. 
    more » « less
  3. Stroke survivors experience muscle weakness and low weight-bearing capacity that impair their walking. The activation of the plantarflexor muscles is diminished following a stroke, which degrades propulsion and balance. Powered exoskeletons can improve gait capacity and restore impaired muscle activity. However, a technical barrier exists to generate systematic control methods to predictably and safely perturb the paretic leg using a wearable device to characterize the plantarflexors’ muscle output for gait training. In this paper, a closed-loop robust controller is designed to impose an ankle joint rotation (i.e., a kinematic perturbation) in the mid-late stance phase to target the soleus muscle using a powered cable-driven ankle-foot orthosis. The goal is to generate soleus muscle activity increments throughout a gait experiment by applying ankle perturbations. This ability to modulate plantarflexor activity can be used in future conditioning studies to improve push-off and propulsion during walking. However, the optimal perturbation magnitude for each participant is unknown. Hence, online adaptation of the ankle perturbation is well-motivated to modulate the soleus response measured using surface electromyography (EMG). An extremum seeking controller (ESC) is implemented in real-time to compute the ankle perturbation magnitude (i.e., dorsiflexion angle) exploiting the soleus EMG response from the previous perturbed step to maximize the soleus response in the next perturbed step. A Lyapunov-based stability analysis is used to guarantee exponential kinematic tracking of the ankle perturbation objective. 
    more » « less
  4. null (Ed.)
    A reliable neural-machine interface is essential for humans to intuitively interact with advanced robotic hands in an unconstrained environment. Existing neural decoding approaches utilize either discrete hand gesture-based pattern recognition or continuous force decoding with one finger at a time. We developed a neural decoding technique that allowed continuous and concurrent prediction of forces of different fingers based on spinal motoneuron firing information. High-density skin-surface electromyogram (HD-EMG) signals of finger extensor muscle were recorded, while human participants produced isometric flexion forces in a dexterous manner (i.e. produced varying forces using either a single finger or multiple fingers concurrently). Motoneuron firing information was extracted from the EMG signals using a blind source separation technique, and each identified neuron was further classified to be associated with a given finger. The forces of individual fingers were then predicted concurrently by utilizing the corresponding motoneuron pool firing frequency of individual fingers. Compared with conventional approaches, our technique led to better prediction performances, i.e. a higher correlation ([Formula: see text] versus [Formula: see text]), a lower prediction error ([Formula: see text]% MVC versus [Formula: see text]% MVC), and a higher accuracy in finger state (rest/active) prediction ([Formula: see text]% versus [Formula: see text]%). Our decoding method demonstrated the possibility of classifying motoneurons for different fingers, which significantly alleviated the cross-talk issue of EMG recordings from neighboring hand muscles, and allowed the decoding of finger forces individually and concurrently. The outcomes offered a robust neural-machine interface that could allow users to intuitively control robotic hands in a dexterous manner. 
    more » « less
  5. Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. EMG was recorded from eight hand-forearm muscles in nine healthy individuals. Modularity was defined using non-negative matrix factorization to identify low rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies as a set, and individually, revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both datasets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest a cortical role in combining corticospinal connectivity to individual intrinsic hand muscles with modular mulit-muscle activation via synergies. 
    more » « less