skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ten simple rules for running a summer research program
To continue to advance the field of computational biology and fill the constantly growing need for new trainees who are well positioned for success, immersive summer research experiences have proven to be effective in preparing students to navigate the challenges that lay ahead in becoming future computational biologists. Here, we describe 10 simple rules for planning, offering, running, and improving a summer research program in computational biology that supports students in honing technical competencies for success in research and developing skills to become successful scientific professionals.  more » « less
Award ID(s):
2050746 2150326
PAR ID:
10398840
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
11
ISSN:
1553-7358
Page Range / eLocation ID:
e1010588
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kakulapati, Vijayalakshmi (Ed.)
    Recruiting, training and retaining scientists in computational biology is necessary to develop a workforce that can lead the quantitative biology revolution. Yet, African-American/Black, Hispanic/Latinx, Native Americans, and women are severely underrepresented in computational biosciences. We established the UCLA Bruins-in-Genomics Summer Research Program to provide training and research experiences in quantitative biology and bioinformatics to undergraduate students with an emphasis on students from backgrounds underrepresented in computational biology. Program assessment was based on number of applicants, alumni surveys and comparison of post-graduate educational choices for participants and a control group of students who were accepted but declined to participate. We hypothesized that participation in the Bruins-in-Genomics program would increase the likelihood that students would pursue post-graduate education in a related field. Our surveys revealed that 75% of Bruins-in-Genomics Summer participants were enrolled in graduate school. Logistic regression analysis revealed that women who participated in the program were significantly more likely to pursue a Ph.D. than a matched control group (group x woman interaction term of p = 0 . 005 ). The Bruins-in-Genomics Summer program represents an example of how a combined didactic-research program structure can make computational biology accessible to a wide range of undergraduates and increase participation in quantitative biosciences. 
    more » « less
  2. This Work-in-Progress paper in the Research Category uses a retrospective mixed-methods study to better understand the factors that mediate learning of computational modeling by life scientists. Key stakeholders, including leading scientists, universities and funding agencies, have promoted computational modeling to enable life sciences research and improve the translation of genetic and molecular biology high- throughput data into clinical results. Software platforms to facilitate computational modeling by biologists who lack advanced mathematical or programming skills have had some success, but none has achieved widespread use among life scientists. Because computational modeling is a core engineering skill of value to other STEM fields, it is critical for engineering and computer science educators to consider how we help students from across STEM disciplines learn computational modeling. Currently we lack sufficient research on how best to help life scientists learn computational modeling. To address this gap, in 2017, we observed a short-format summer course designed for life scientists to learn computational modeling. The course used a simulation environment designed to lower programming barriers. We used semi-structured interviews to understand students' experiences while taking the course and in applying computational modeling after the course. We conducted interviews with graduate students and post- doctoral researchers who had completed the course. We also interviewed students who took the course between 2010 and 2013. Among these past attendees, we selected equal numbers of interview subjects who had and had not successfully published journal articles that incorporated computational modeling. This Work-in-Progress paper applies social cognitive theory to analyze the motivations of life scientists who seek training in computational modeling and their attitudes towards computational modeling. Additionally, we identify important social and environmental variables that influence successful application of computational modeling after course completion. The findings from this study may therefore help us educate biomedical and biological engineering students more effectively. Although this study focuses on life scientists, its findings can inform engineering and computer science education more broadly. Insights from this study may be especially useful in aiding incoming engineering and computer science students who do not have advanced mathematical or programming skills and in preparing undergraduate engineering students for collaborative work with life scientists. 
    more » « less
  3. Lane College is a Historically Black College with a mission to educate underserved minority students. As part of a primarily undergraduate teaching institution, the Division of Natural and Physical Sciences provides students with a variety of hands-on experiences, including an eight-week summer research experience. Prior to the implementation of the Lane College summer research experience, only a small number of students participated in summer research or internships at other institutions. The Lane College summer undergraduate research experience aims to be more inclusive by eliminating GPA requirements, encouraging first- and second-year students to apply, and allowing students to select any of the available research projects in the areas of biology, chemistry, computer science, mathematics, or physics, regardless of major. Each year, twelve to fifteen students participate in mentored research in the areas of biology, chemistry, computer science, mathematics, and physics. The students participate in a professional development course twice per week where they learn about career opportunities in science and mathematics, preparing personal statements, scientific writing, and practice on how to effectively present their research findings. The students conduct their research in small groups with a faculty mentor. At the end of the summer, students present their overall results at the Lane Summer Science Symposium. Evaluation of student attitudes towards the research experience during the first iteration in summer 2021 indicates students internalized STEM community values, and developed a sense of self-efficacy for research, a strong sense of project ownership, and a sense of belonging to the science research community. Students participating in the evaluation believe that the experience made science more interesting and that they have better clarity of career opportunities in STEM. Similar levels of engagement were observed in the summers of 2022 and 2023. Students participating in the program are encouraged to submit abstracts to both regional and national conferences. This has resulted in 14 students presenting annually at discipline-specific conferences and one publication co-authored by two summer research students. This work is supported by grants NSF EES 2011938 and EDU 1833960. 
    more » « less
  4. Summer computing camps for high school students are rapidly becoming a staple at High Performance Computing (HPC) centers and Computer Science departments around the country. Developing complexity in education in these camps remains a challenge. Here, we present a report about the implementation of such a program. The Summer Computing Academy (SCA) at is a weeklong cybertraining1 program offered to high school students by High Performance Research Computing (HPRC) at Texas A&M University (Texas A&M; TAMU). The Summer Computing Academy effectively uses cloud computing paradigms, artificial intelligence technologies coupled with Raspberry Pi micro-controllers and sensors to demonstrate “computational thinking”. The program is steeped in well- reviewed pedagogy; the refinement of the educational methods based on constant assessment is a critical factor that has contributed to its success. The hands-on exercises included in the program have received rave reviews from parents and students alike. The camp program is financially self-sufficient and has successfully broadened participation of underrepresented groups in computing by including diverse groups of students. Modules from the SCA program may be implemented at other institutions with relative ease and promote cybertraining efforts nationwide. 
    more » « less
  5. At San Francisco State University, a Hispanic Serving Institute and a Primarily Undergraduate Institution, 67% of engineering students are from ethnic minority groups, with only 27% of Hispanic students retained and graduated in their senior year. Additionally, only 14% of students reported full-time employment secured at the time of graduation. Of these secured jobs, only 54% were full-time positions (40+ hours a week). To improve the situation, San Francisco State University, in collaboration with two local community colleges, Skyline and Cañada Colleges, was recently funded by the National Science Foundation through a Hispanic Serving Institute Improving Undergraduate STEM Education Strengthening Student Motivation and Resilience through Research and Advising program to enhance undergraduate engineering education and build capacity for student success. This project will use a data-driven and evidence-based approach to identify the barriers to the success of underrepresented minority students and to generate new knowledge on the best practices for increasing students’ retention and graduation rates, self- efficacy, professional development, and workforce preparedness. Three objectives underpin this overall goal. The first is to develop and implement a Summer Research Internship Program together with community college partners. The second is to establish an HSI Engineering Success Center to provide students with academic resources, networking opportunities with industry, and career development tools. The third is to develop resources for the professional development of faculty members, including Summer Faculty Teaching Workshops, an Inclusive Teaching and Mentoring Seminar Series, and an Engineering Faculty Learning Community. Qualitative and quantitative approaches are used to assess the project outcomes using a survey instrument and interview protocols developed by an external evaluator. This paper discusses an overview of the project and its first-year implementation. The focus is placed on the introduction and implementation of the several main project components, namely the Engineering Success Center, Summer Research Internship Program, and Faculty Summer Teaching Workshop. The preliminary evaluation results, demonstrating the great success of these strategies, are also discussed. 
    more » « less