The use of covalent organic frameworks (COFs) for hazardous radioiodine capture has been highly sought after recently. However, the synthesis of high-performance COF adsorbents while circumventing the limitations of traditional solvothermal methods remains largely unexplored. Herein, we for the first time combine microwave-assisted synthesis and mixed-linker strategy to fabricate multivariate COF adsorbents (X% OMe-TFB-BD COFs, X% = 0, 33, 50, 67, and 100 mol%) with varying ratios of benzidine (BD) and 3,3′-dimethoxylbenzidine (BD-OMe) linkers in a rapid and facile manner. Adjusting the BD-OMe/BD mole ratios has led to distinct variations in density, crystallinity, porosity, morphology, and thermal/chemical stability of the resultant COFs, which empowered fine-tuning of the adsorption performance towards static iodine vapor. Remarkably, the 50 % OMe-TFB-BD COF exhibited an ultrahigh iodine adsorption capability of 8.2 g g−1, surpassing those of single-component COFs, mixed-linker COFs with other methoxy content, physically blended mixtures, and most existing COF adsorbents. Moreover, 50 % OMe-TFB-BD COF was recyclable seven times without obvious loss in its adsorption capacity. This work underscores the substantial potential of microwave-assisted mixed-linker strategy as a viable approach for developing multivariate COFs with shortened reaction times, precisely tailored pore environment, and tunable sorption properties, which are of considerable promise for environmental remediation and other niche applications.
more »
« less
Threefold reactivity of a COF-embedded rhenium catalyst: reductive etherification, oxidative esterification or transfer hydrogenation
The reactivity of the novel Re( i ) catalyst [Re( C12 Anth-py 2 )(CO) 3 Br] is modulated by its interactions with the covalent organic framework (COF) TFB-BD. The complex catalyzes either reductive etherification, oxidative esterification, or transfer hydrogenation depending on its local environment (embedded in TFB-BD, in homogeneous solution or co-incubated with TFB-BD, respectively). The results highlight that COFs can drastically modulate the reactivity of homogeneous catalysts.
more »
« less
- Award ID(s):
- 2109175
- PAR ID:
- 10398842
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 58
- Issue:
- 86
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 12074 to 12077
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The halogen-bond (X-bond) donors 1,3- and 1,4-diiodotetrafluorobenzene (1,3-di-I-tFb and 1,4-di-I-tFb, respectively) form cocrystals with trans-1,2-bis(2-pyridyl)ethylene (2,2′-bpe) assembled by N···I X-bonds. In each cocrystal, 2(1,3-di-I-tFb)·2(2,2′-bpe) and (1,4-di-I-tFb)·(2,2′-bpe), the donor molecules support the C=C bonds of 2,2′-bpe to undergo an intermolecular [2+2] photodimerization. UV irradiation of each cocrystal resulted in stereospecific and quantitative conversion of 2,2′-bpe to rctt-tetrakis(2-pyridyl)cyclobutane (2,2′-tpcb). In each case, the reactivity occurs via face-to-face π-stacked columns wherein nearest-neighbor pairs of 2,2′-bpe molecules lie sandwiched between X-bond donor molecules. Nearest-neighbor C=C bonds are stacked criss-crossed in both cocrystals. The reactivity was ascribed to the olefins undergoing pedal-like motion in the solid state. The stereochemistry of 2,2′-tpcb is confirmed in cocrystals 2(1,3-di-I-tFb)·(2,2′-tpcb) and (1,4-di-I-tFb)·(2,2′-tpcb).more » « less
-
null (Ed.)Combining strain-promoted azide–alkyne cycloaddition (SPAAC) and inorganic click (iClick) reactivity provides access to metal 1,2,3-triazolates. Experimental and computational insights demonstrate that iClick reactivity of the tested metal azides (LM-N 3 , M = Au, W, Re, Ru and Pt) depends on the accessibility of the azide functionality rather than electronic effects imparted by the metal. SPAAC iClick reactivity with cyclooctyne is observed when the azide functionality is sterically unencumbered, e.g. [Au(N 3 )(PPh 3 )] (Au–N3), [W(η 3 -allyl)(N 3 )(bpy)(CO) 2 ] (W–N3), and [Re(N 3 )(bpy)(CO) 3 ] [bpy = 2,2′-bipyridine] (Re–N3). Increased steric bulk and/or preequilibria with high activation barriers prevent SPAAC iClick reactivity for the complexes [Ru(N 3 )(Tp)(PPh 3 ) 2 ] [Tp = tris(pyrazolyl)borate] (Ru–N3), [Pt(N 3 )(CH 3 )(P i Pr 3 ) 2 ] [ i Pr = isopropyl] (Pt(II)–N3), and [Pt(N 3 )(CH 3 ) 3 ] 4 ((PtN3)4). Based on these computational insights, the SPAAC iClick reactivity of [Pt(N 3 )(CH 3 ) 3 (P(CH 3 ) 3 ) 2 ] (Pt(IV)–N3) was successfully predicted.more » « less
-
The ditopic halogen-bond (X-bond) donors 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene (1,2-, 1,3-, and 1,4-di-I-tFb, respectively) form binary cocrystals with the unsymmetrical ditopic X-bond acceptor trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpe). The components of each cocrystal (1,2-di-I-tFb)·(2,4-bpe), (1,3-di-I-tFb)·(2,4-bpe), and (1,4-di-I-tFb)·(2,4-bpe) assemble via N···I X-bonds. For (1,2-di-I-tFb)·(2,4-bpe) and (1,3-di-I-tFb)·(2,4-bpe), the X-bond donor supports the C=C bonds of 2,4-bpe to undergo a topochemical [2+2] photodimerization in the solid state: UV-irradiation of each solid resulted in stereospecific, regiospecific, and quantitative photodimerization of 2,4-bpe to the corresponding head-to-tail (ht) or head-to-head (hh) cyclobutane photoproduct, respectively.more » « less
-
Abstract Reactive rhenium(III) nitride complexes could result from filling Re─N π* orbitals, but such complexes lie beyond the “nitrido wall” and are rare due to their instability. Here, we describe a method for bypassing the nitrido wall by incorporating a redox‐active isocyanide supporting ligand, which accommodates two electrons as shown by crystallographic, spectroscopic, and computational studies. These electrons can be returned to the metal during its facile reaction with CO to form a cyanate complex, demonstrating the nucleophilic reactivity of the nitride. Thus, assistance by the isocyanide enables an N2‐derived rhenium nitride to engage in N─C bond forming reactivity.more » « less
An official website of the United States government

